Scaling Up and modeling for Transport and Flow in Porous Media

Numerical Method for Elliptic Multiscale Problems

Isabelle Greff - LMA Joint work with W. Hackbusch - MPI Leipzig

Université de Pau et des Pays de l'Adour

Dubrovnik, October 13 - 16th 2008

Position of the problem

Motivation

Large class of multiscale problems are described by partial differential equations with heterogeneous coefficients. Such coefficients represent the properties of a composite material or heterogeneity of the medium in the computation of flow in porous media

Difficulty

Computation of an accurate discrete solution of such problems requires a very fine discretisation.

 \Rightarrow High storage and computation costs.

Interest

The average behaviour of the elliptic oscillatory operator on a coarse scale taking into account the small scale features of the solution.

・ロト ・ 同ト ・ ヨト ・ ヨト

References: Different types of multiscale methods

- Weinan/Engquist: Heterogeneous multiscales methods(2003)
- Brewster/Beylkin: Multiresolution Methods (1995)
- Babuška-Osborn: Generalised Finite Element Method: 1d (1983) Hou-Wu: Generalised to 2d (1997)
- Variational multiscale approach introduced by Hughes and Brezzi, Arbogast for a mixed variant.

Our approach: to provide a smoother elliptic operator which behaves like the original operator on a coarse mesh, with no smoothness or periodicity requirement.

▶ < □ ▶ < □ ▶ < □</p>

Multiscale Approach Theory for periodic coefficient Numerical results

Outline

Multiscale approach

- Model problem
- Finite element framework
- Reformulation of the problem
- Theory for periodic coefficients in 1d
- Numerical Results in 1d

Model problem

The elliptic boundary value problem on Ω , a bounded Lipschitz domain in \mathbb{R}^d ,

$$\begin{cases} Lu = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases} \quad \text{with} \quad L = -\sum_{i,j=1}^{d} \frac{\partial}{\partial x_j} \alpha_{ij} \frac{\partial}{\partial x_i} \qquad (1) \end{cases}$$

 $f \in L^2(\Omega)$. The coefficients $\alpha_{ij} \in L^{\infty}(\Omega)$ may be **oscillatory** or **jumping**.

Let $\underline{\lambda}, \overline{\lambda} > 0$ s.t. the matrix function $\alpha(x) = (\alpha_{ij}(x))_{i,j=1,...,d}$ satisfies $0 < \underline{\lambda} \le \lambda(\alpha(x)) \le \overline{\lambda}$ for all eigenvalues $\lambda(\alpha(x))$ of $\alpha(x)$ and almost all $x \in \Omega$.

Difficulty: Accurate discrete solution of such problems requires a very fine discretisation.

→ High storage and computational costs.

くロン くぼう くほう くほう 二日

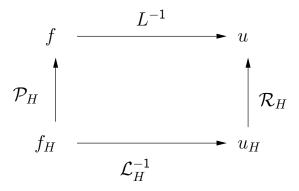
Notation

- $V = H_0^1(\Omega)$.
- Let T_H be a regular grid adapted to the coarse level.
- ► Let V_H be the P^1 -Lagrange FE-space associated to \mathcal{T}_H , with dim $V_H = m$.
- ► Let \mathcal{P}_H be some prolongation from the macroscopic level to the continuous level.
- Let \mathcal{R}_H be a restriction operator associated to \mathcal{P}_H .

・ロト ・ 同ト ・ ヨト ・ ヨト

Formulation

The use of the Green function of the operator L, allows to consider L^{-1} . We have the following diagram:



< = > < = > < = > < = >

Problem 1: Let $\mathcal{L}_H \in \mathbb{R}^{m \times m}$ be defined by

$$\mathcal{L}_H := \left(\mathcal{R}_H L^{-1} \mathcal{P}_H \right)^{-1}.$$

Can \mathcal{L}_H be interpreted as an approximation A_H of some local differential operator A with the step size H?

Difficulty: The Green function is not always explicitely given. Idea Consider a very small step size h s.t. $h \ll H$ and the discretisation L_h of the operator L on a fine grid T_h .

不同 とうきょうき

Finite element framework

- 1. Let V_h be the P^1 -Lagrange FE space $V_h = \text{span}\{b_1^h, \dots, b_n^h\}$ and dim $V_h = n \text{ s.t. } V_H \subset V_h$.
- 2. Isomorphisms P_h and its adjoint $R_h \in L(V', \mathbb{R}^n)$ defined by

$$P_h : \mathbb{R}^n \to V_h \subset V$$
$$v = (v_1, \dots, v_n) \longmapsto P_h v = \sum_{i=1}^n v_i b_i^h \quad \text{and } R_h = P_h^*.$$

- 3. Let $M_h \in \mathbb{R}^{n \times n}$ and $M_H \in \mathbb{R}^{m \times m}$ be the mass matrices: $M_h := R_h P_h$ and $M_H := R_H P_H$.
- 4. The FE-stiffness matrix L_h is given by

$$L_h = R_h \, L \, P_h$$

< 口 > < 同 > < 三 > < 三 > 、

The inclusion $V_H \subset V_h$ ensures that the following mappings are well defined:

► The prolongation operator P_{h←H} from the coarse grid T_H to the fine grid T_h given by

$$P_{h\leftarrow H} = (P_h^{-1} P_H) : \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

► The restriction operator $R_{H \leftarrow h} = (P_{h \leftarrow H})^*$ from the fine grid \mathcal{T}_h to the **coarse** grid \mathcal{T}_H .

Normalised prolongation and restriction: $\tilde{P}_{h\leftarrow H}: \mathbb{R}^m \to \mathbb{R}^n$

$$\tilde{P}_{h\leftarrow H} := M_h P_{h\leftarrow H} M_H^{-1}$$
 and $\tilde{R}_{H\leftarrow h} := \left(\tilde{P}_{h\leftarrow H}\right)^*$.

Let $\|\cdot\|$ be the norm defined for a matrix $X \in \mathbb{R}^{m imes m}$ by

$$||X||| := ||P_H X R_H||_{L^2(\Omega) \leftarrow L^2(\Omega)} = ||M_H^{1/2} X M_H^{1/2}||_2.$$

Reformulation of the Problem

With help of \mathcal{H} -arithmetic the computation of the discrete operator L_h^{-1} on the fine mesh is possible. Therefore the following matrix $\mathcal{L}_{H,h}$ is available

$$\mathcal{L}_{H,h} := \left(\tilde{R}_{H \leftarrow h} L_h^{-1} \tilde{P}_{h \leftarrow H} \right)^{-1}.$$

Problem 1 with the operator $\mathcal{L}_{H,h}$ leads to Problem 2:

Problem 2: We are looking for an elliptic operator $A \in L(V, V')$ such that its discretisation A_H on the coarse grid satisfies:

$$A_H \approx \mathcal{L}_{H,h}$$
 for all h small enough. (2)

Remarks

- Engineer's point of view: average solution for *f* given on a coarse level.
- The inverse L_h^{-1} is treated with Hierarchical Matrices (\mathcal{H} -matrices).
- Hierarchical Matrices arithmetic: low cost for arithmetic and storage.
- Storage of $\mathcal{L}_{H,h}$ and not L_h .
- Once $\mathcal{L}_{H,h}$ is computed, it can be use as much as one needs.

・ 何 ト ・ ヨ ト ・ ヨ

Solution of problem 2 in 1d

Let the elliptic operator A be defined by

$$A = -\frac{d}{dx} \left(a \frac{d}{dx} \right)$$

where the coefficient a is given on each segment $[x_j^H, x_{j+1}^H]$ by

$$a_{|[x_{j}^{H}, x_{j+1}^{H}]} = \frac{1}{\theta_{j}} \quad \text{where} \quad \theta_{j} = \frac{1}{x_{j+1}^{H} - x_{j}^{H}} \int_{x_{j}^{H}}^{x_{j+1}^{H}} \frac{ds}{\alpha(s)} \, .$$

For α T-periodic, H > T, H and T proportional

$$a = \frac{1}{M(\frac{1}{\alpha})} = \alpha_0$$
 where $M(\frac{1}{\alpha}) = \frac{1}{T} \int_0^T \frac{dx}{\alpha(x)}$.

Homogenisation in 1d: Exact solution $u = L^{-1}f$ is approximated by the homogenised one $u_0 = L_0^{-1}f$ with a precision depending on the period T

Theory for periodic coefficient in 1d

Error estimate The following error estimate holds

$$\|\mathcal{L}_{H,h}^{-1} - L_{0,H}^{-1}\| \le C\left(\varepsilon(h) + TM\left(\frac{1}{\alpha}\right)(1+T) + \varepsilon_0(H)\right),$$

where $\varepsilon(h)$ (resp. $\varepsilon_0(H)$) is a bound on the FE-discretisation error of L on the fine mesh \mathcal{T}_h (resp. of the homogenised L_0 on \mathcal{T}_H). Idea of the proof:

- 1. Decomposition of the Green function *G* associated to *L*: $G(x,t) = G_0(x,t) + R_T(x,t),$
- 2. Let B_h (resp. $B_{0,H}$) be Galerkin discretisation of L^{-1} on \mathcal{T}_h (resp. of L_0^{-1} on \mathcal{T}_H) $\Rightarrow B_h = B_{0,h} + B_{T,h}$.
- 3. Bebendorf/Hackbusch gives

$$\begin{aligned} ||L_{0,H}^{-1} - M_{H}^{-1} B_{0,H} M_{H}^{-1}||_{2} &\leq 2 \, ||M_{H}^{-1}||_{2} \, \varepsilon_{0}(H) \\ ||L_{h}^{-1} - M_{h}^{-1} B_{h} M_{h}^{-1}||_{2} &\leq 2 \, ||M_{h}^{-1}||_{2} \, \varepsilon(h) \,. \end{aligned}$$

4.
$$||B_{T,h}||_2 \le C h T M\left(\frac{1}{\alpha}\right) (1+T)$$

Numerical Results in 1d: $\Omega = [0, 1]$

Periodic coefficient

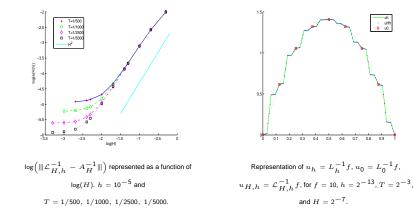
Let $\alpha > 0$ be the *T*-periodic, piecewise constant defined on a period [0, T[by:

$$\alpha(x) = \begin{cases} 8.1 \,, & x \in [0, \frac{T}{4}[\\ 0.3 \,, & x \in [\frac{T}{4}, \frac{T}{2}[\\ 20.55 \,, & x \in [\frac{T}{2}, \frac{3T}{4}[\\ 1.0 \,, & x \in [\frac{3T}{4}, T[\,. \end{cases}] \end{cases}$$

► Computation of the norm $\||\mathcal{L}_{H,h}^{-1} - A_H^{-1}|\|$ for $h = 10^{-5}$ and different values of H between 1/2 and 50 h, and the period T is varying between $T = 10^{-3}$ and $T = 10^{-4}$.

► Computation of the discrete solution $u_h = L_h^{-1} f$, $u_0 = L_0^{-1} f$, $u_{H,h} = \mathcal{L}_{H,h}^{-1} f$ for a constant right-hand side f = 10 and the step sizes $h = 2^{-13}$ and $H = 2^{-7}$.

Multiscale Approach Theory for periodic coefficient Numerical results



- Convergence of order almost 2 when H is large in comparison with T.
- ► u_{H,h} is matching u_h. The details of u_h are well captured by u_{H,h}, whereas u₀ interpolates the fine solution u_h.

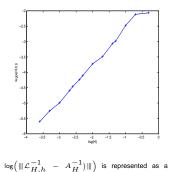
Non-periodic oscillatory coefficient

Let α be defined by $\alpha(x) = \left[2 - \sin(2\pi \tan(\frac{x\pi}{2}))\right]^{-1}$ on $\Omega = [0, 1]$ \longrightarrow contains a continuum of scales



(a) < (a) < (b) < (b)

<u> </u>				
H h	1/ 1000	1/ 2000	1/ 4000	1/ 8000
1/2	8.60e-3	8.58e-3	8.59e-3	8.61e-3
1/5	7.70e-3	7.68e-3	7.68e-3	7.68e-3
1/10	3.36e-3	3.35e-3	3.35e-3	3.34e-3
1/20	1.08e-3	1.06e-3	1.04e-3	1.04e-3
1/25	8.56e-4	8.57e-4	8.59e-4	8.61e-4
1/50	3.22e-4	3.22e-4	3.22e-4	3.23e-4
1/100	1.94e-4	1.91e-4	1.89e-4	1.88e-4
1/200	9.23e-5	8.29e-5	7.90e-5	7.80e-5
1/250	7.07e-5	6.21e-5	5.89e-5	5.77e-5
1/400	-	3.84e-5	3.57e-5	3.46e-5
1/500	3.42e-5	2.97e-5	2.65e-5	2.54e-5
1/1000	2.82e-15	1.30e-5	1.37e-5	1.02e-5
1/2000	-	4.55e-14	5.63e-6	5.58e-6
1/4000	-	-	6.53e-14	2.49e-6
$\ \mathcal{L}_{H,h}^{-1} - A_{H}^{-1}) \ $, for $h = 1/1000, 1/2000, 1/4000,$				



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1/8000

function of $\log(H)$ for h = 1/8000

Notwithstanding the very oscillatory behaviour of the coefficient α , Good convergence of the norm: globally order 1.

Conclusion

- 1. In 1d, the discrete operator $\mathcal{L}_{H,h} := \left(\tilde{R}_{H \leftarrow h} L_h^{-1} \tilde{P}_{h \leftarrow H}\right)^{-1}$ on the coarse mesh behaves like the discretisation of an elliptic operator.
- 2. One possible approximation is given by $A = -\frac{d}{dx} \left(a \frac{d}{dx} \right)$, where *a* is the piecewise harmonic average of α .
- 3. Currently: Numerical experiments in 2d.

For more details, see:

Greff/Hackbusch, Numerical methods for elliptic multiscale problems, 16 (2), J. of Numer. math, 107-138 (2008).