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L>=(0,T5 L*(2)) AND L*(0,T; H(Q));

ESTIMATES ON THE DIFFERENCES OF THE SPACE AND TIME TRANS-
LATES, WHICH IMPLIES THE PROPRIETY OF THE RELATIVE COMPACT-
NESS BY THE THEOREM OF FRECHET-KOLMOGOROV ;

STRONG CONVERGENCE IN L? OF THE APPROXIMATE SOLUTION TO
THE WEAK SOLUTION OF THE PROBLEM (P);

NUMERICAL TESTS.



CONVECTION-DIFFUSION PROBLEM

We consider the convection-diffusion problem

[ Ou— V- (AX)Vu) + V- (Vu) = f(x,t) in Qr =Q x (0,7),
(P) § wu(x,t)=0 on o0 x (0,T),
| u(x,0) = uo(x) for all x € Q.
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CONVECTION-DIFFUSION PROBLEM

We suppose that the following hypotheses are satisfied

(H1) € is an open bounded connected polyhedral subset of R%, d € N\ {0};
(H2) A is a measurable function from 2 to M4(R), where M (R)
denotes the set of d X d symmetric matrices, such that for a.e.
x € Q) the set of its eigenvalues is included in [\, A], where A\, A € L>(Q)
are such that 0 < ap < A(x) < A(x);
(H3) V € L*(0,T; H(div,Q)) N L*®(Qr) is such that V-V > 0 a.e. in Qr;
up € L(Q);
(Hs) f € L*(Qr).
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THE POSSIBLE FINITE VOLUME SCHEMES

The essential problem is related with the fact that A is a full matrix, in such case it is not
possible to use the classical two point discretization.

Possible solutions among the finite volume methods :

Finite Volumes - Finite Elements
(Angot A., Dolejsi V., Feistauer M., Felcman j., Vohralik M.)

Idea : Use the dual finite element grid in order approximate the diffusion term.

Multipoint Flux Approximation Methods (MFAM)
(Aavatsmark I., Eigestad G. T., Klausen, R. A.)

Idea : Use several neighbors of the control volume in order to define the diffusive flux;

Hybride Finite Volume Method
(Eymard R., Gallouét R., Herbin R.)

Idea : Take into account the supplementary unknowns associated with the cell faces.
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DISCRETIZATION

A discretization of €2, denoted by D, is defined as the triplet D = (M, E,P), where :

1. M is a family of control volumes;

2. & = Eint UEext 18 a set of edges;

3. P = (rx)xem is a family of points, such that for all K € M, xx € K and K is

X i -star-shaped.

m(K), the measure of K € M ;

m(o), the measure of o € &

Ex, the set of edges of K € M ;

M, the set of control volumes containing o € & ;

nr ., the unit vector outward to K and normal to o € £k ;
dx -, the Fuclidean distance between xx and o € £k ;

Dk », the cone with vertex xx and basis o € Ek.

A time discretization is given by 0 = tp < t1... < ty = T with the constant time step
k=T/N.
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DISCRETIZATION

We associate with the mesh the following spaces of discrete unknowns
Xp = {<<UK)KEM7 (UU>U€5)7UK S R? Vo € R}

Xp,o ={v € Xp such that (vs)ses,,, = 0},

The space Xp is equipped with the semi-norm

which is the norm in Xp g.
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THE FINITE VOLUME SCHEME

(i) The initial condition for the scheme

e = /K o () dx;

(ii) The discrete equations

m(K)(uf —ui ) +k Y Fro@w")+k Y Viouk,=m(K)fg VK€M,

cefi cefi

tn
where fr = ﬁ/ / f(x,t)dxdt;
ty_1 v K

(iii) The local conservation of the total flux

(Fr,o(u") + Vi ou ) + (Fr,o(u") + Vo ouf ;) =0 forall o€ &nt, Mo ={K,L};

(iv) The discrete analog of the boundary conditions

uy =0 forall o€ Eept -
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THE VARIATIONAL FORM OF THE FINITE VOLUME SCHEME

We put the scheme (i)-(iv) under the equivalent form

Let u° is defined by

O_—l U | X
“K_m(K)/K o(x) VK € M.

For each n € {1,..., N} find u" € Xp o such that for all v € Xp o,

Z m(K)vk (uyx —uy ) +k <v,u” >p +k <v,u” >r= Z m(K)vk fk,
KeM KeM

where

<v,u" >p= Z Z (v — vo ) Fr,o(u”™),

KemM O'EEK

and
<v,u” >rp= Z Z (VK — Vo)V, o U -

KemM O'EEK
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DISCRETIZATION OF THE CONVECTION TERM

We define
VK,U = / V(X) . IIK,U;

let an upwind value u% , be given by

/U/Z;-L, if VK,O‘ < O.

n
uK,O’ T

We have completely defined the discrete version of the convective term. We give below the
definition of the discret flux F »(u"™).
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DISCRETIZATION OF THE DIFFUSION TERM

We denote
Vikoeu=Vgu+ Rrgosu- Nk o,
where
1
Vku = ——— m(o)(ue — Uk )NK o
(k) 22

and where

077¢

RK,UUI (Ua —Uux — VKU - (XU _XK))7
dK,O’

with some ax > 0, which should be chosen properly.

Optimization of ax has been studied by O. Angelini, C. Chavant, E. Chenier, R. Eymard.
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DISCRETIZATION OF THE DIFFUSION TERM

We denote
Vikoeu=Vgu+ Rrgosu- Nk o,
where
1
Vku = —— m(o)(ue — Uk )NK o
K 2z,
and where
d
Rk ou = Vd (ue —urx — Vru- (Xo —XK)).

dK,O’
The choice ax = +/d yields the two point scheme in case of meshes which satisfy
Nng o, = —xZ;iK.

Optimization of ax has been studied by O. Angelini, C. Chavant, E. Chenier, R. Eymard.
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THE DISCRET GRADIENT Vpu

We define the discret gradient Vpu by

Vpu(x) =Vksu X € Dk,

where Dy » is the cone with vertex xx and basis o € £k, notice that the bilinear form

<v,u >p= Z Z (v — Vo ) Fr,o(u) = /QVDU - A(x)Vpu

KeMoelgk

is symmetric. We show in what follows that it is also continuous and coercive.
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ADVANTAGES OF THE SCHEME

Very general class of meshes;
Local conservativity ;

The discretization of the convection and diffusion flux does not involve the unk-

nowns outside of the cell;

One can easily eliminate the cell unknowns ux and then solve the system of card(£)

equations.
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EXISTENCE AND UNIQUENESS OF THE DISCRETE SOLUTION

Lemma 1 Let D be the discretization of €2.

(i) There exists C7 > 0 and o > 0 such that
| < U,v >F | < C1|U|X|U|X

and

<w,u >p> olulk.

for all u,v € Xp.
(ii) There exists C'> > 0 such that

| < Uu,v>Tr ‘ < CQ‘U/‘X"ULX

and
<u,u>7=0

for all u,v € Xp.
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EXISTENCE AND UNIQUENESS OF THE DISCRETE SOLUTION

The Lemma 1 and the Lax-Milgram Theorem implies the following result
Theorem 1 The discrete problem (i)-(iv) possess the unique solution.

Definition of the approximate solution
Let u™ € Xpo, n=1...N, be a solution of the approximate problem, with kK =T /N. We

say that the piecewise constant function wup  is an approximate solution of the problem

(P) if

unk(x,0) =uy) forallx € K

unk(x,t) =ux  forall (x,t) € K X (tn_1,1tn].

We also define its gradient by

Viunr(x,t) = Vpu"(x) forall (x,t) € K X (tn—1,tn].
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A PRIORI ESTIMATES

Theorem 2 (A priori estimate) Let up x be a solution of the discrete problem, then it is
such that

|wn, k(- )HLOO(OTL2(Q)) HUOHL2(Q)+2T||f||L2(QT)7

AllVrun, k||L2(Q ) S 5 ||U0HL2(Q) + ([lwoll 2y + 271 fll 22 (@) TN fll L2 (1) -

We could show as well the estimates on time and space translates

Theorem 3 Let up  be an approximate solution. There exists C' > 0 and 0 < ¢ < 1/2,
which do not depend on A and k, such that

[une(- + ¥, +7) = unillL2(0m < CHWT +|y]”)

In view of the Theorem 2, the Fréchet-Kolmogorov Compactness Theorem implies that the

family {up. 1} is relatively compact in L*(Qr)
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CONVERGENCE RESULTS

Theorem 4  Let F be a family of discretizations of Q and let {up r} be a family of
approximate solutions corresponding to F and k = T//N. Then there exist a function u €
L?(Qr) such that up ; — u strongly in L*(Q7) as h, k — 0. Moreover u € L?(0,T; Hj (Q2)),
Vnup i weakly converge in L? (QT)d to Vu as h,k — 0 and u is the weak solution of the
problem (P).
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OUTLINE OF THE PROOF

Thanks to the a priori estimate there exist some function G € L*(Q7)* such that Viup x

weakly converge in L? (QT)d to G as h, kK — 0. We show then that G = Vwu, more particulary

T T
/ Viunk(x,t) - Y (x,t)dxdt — —/ / u(zx, t)divp(x,t)dxdt
0 Rd 0 Rd

for some 1 (x,t) enough regular.
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OUTLINE OF THE PROOF

In order to show that u is a weak solution of the problem (P) we introduce the following

functional space
d={pecC*'(Qx[0,T]), ¢=00n0dQx][0,T], o(,T)=0}.

Let ¢ € ®, we denote % = ¢(Xk,tn) and ¢, = ©(X,,t,), we show in what follows that

> ml) i — i)k — [ uole(x,0

n=1 KeM
N
» S‘ S‘ (px — o) FK,0(u —>/ /Vgoxt (x)Vu(x,1),
n=1 EMoelk
N

£ Y (o - oh VKauKﬁ/ | ulx YV 1)

By density of the set ® in the set {¢ € L*(0,T; Hy(Q)),p: € L>=(Q1),¢(-,T) = 0} u is

the weak solution of the continuous problem.
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NUMERICAL TEST 1

We consider a 2D domain 2 = (0,2) x (0,1) and T' = 1.
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NUMERICAL TEST 1

The initial data and the boundary conditions are given by the continuous exact solution

r1+x2—1t—3

u(x,t) =e

Approximate solution (left) and exact solution (right) on a triangular grid at ¢ = 1.
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NUMERICAL TEST 1

Number of time steps N, mesh diameter h, number of unknowns and relative error

Uh o — U
Err= max uen HLQ(Q)

for triangular Delaunay and structured quadrangular grids,

0<IST Jullz2 @)
respectively
N h Err Unkn. h Err Unkn.
16 | 0.197642 | 0.039027 483 0.223607 | 0.074821 220
32 | 0.103985 | 0.021936 | 1920 0.111803 | 0.046313 840
64 | 0.053386 | 0.014743 | 7560 0.055902 | 0.032142 | 3280
128 | 0.026758 | 0.012429 | 29802 || 0.027951 | 0.025171 | 12960

The problem is diffusion dominated and we observe a linear convergence of the scheme.
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NUMERICAL TEST 11

We consider the problem (P) in the 2-dimensional space domain 2 = (0,3) x (0,3) with

scalar diffusion tensor given by
Ax)=9

and the constant velocity field
V(x) = (v1,v2).
The initial and boundary conditions are given by the exact solution

1 _50|x—x0—'\f-t|2

— e 2006t +1
2000t 41

u(x, 1)

representing a Gaussian peak centered at the point (xo), being transported by the

convective field V and diffusing.

We set V = (0.8,0.4) and x¢ = (0.5, 1.35).
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NUMERICAL TEST 11 - DIFFUSION DOMINATED CASE

Number of time steps IV, mesh diameter h, number of unknowns and L?(2) error for § = 0.1

at t = 2 for triangular Delaunay and structured quadrangular grids, respectively

N h Unkn. | [Junk — ul|p2q) h Unkn. | [Junkx — ul|p2q)
16 | 0.436 | 477 0.00942 0.3000 220 0.0092
32 | 0.222 1927 0.00519 0.1500 840 0.0078
64 | 0.113 | 7686 0.00299 0.0750 3280 0.0046
128 | 0.057 | 30366 0.00160 0.0375 || 12960 0.0025

Again, we have a linear convergence.
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NUMERICAL TEST II - CONVECTION DOMINATED CASE

Number of time steps N, mesh diameter h, number of unknowns and L*(Q)) error for

d = 0.001 at t = 2 for triangular Delaunay and structured quadrangular grids, respectively

N h Unkn. | [Junk — ul|p2@) h Unkn. | [[unk — ul|p2q)
16 | 0.436 477 0.139 0.3000 220 0.149
32 | 0.222 1927 0.129 0.1500 840 0.141
64 | 0.113 | 7686 0.113 0.0750 3280 0.129
128 | 0.057 | 30366 0.091 0.0375 || 12960 0.112

We see that the numerical diffusion cased by the upwind scheme provides a significant

error.
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NUMERICAL TEST II - CONVECTION DOMINATED CASE

How to reduce the numerical diffusion ?

-Use upstream weighting scheme i.e. set the amount of upstream weighting with
respect to the local Péclet number in order to stabilize the scheme by adding only a
necessary numerical diffusion ;

or

-Use some other, less diffusive scheme for the convection term

-Use the local grid refitment.
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Thank you for your attention!
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