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Existence of the unique discrete solution, a priori esti-

mate on the approximate solution in the discrete norms

L∞(0, T ; L2(Ω)) and L2(0, T ; H1(Ω)) ;

Estimates on the differences of the space and time trans-

lates, which implies the propriety of the relative compact-

ness by the theorem of Fréchet–Kolmogorov ;

Strong convergence in L2 of the approximate solution to

the weak solution of the problem (P) ;

Numerical tests.



Convection-diffusion problem

We consider the convection-diffusion problem

(P)















∂tu−∇ · (Λ(x)∇u) + ∇ · (Vu) = f(x, t) in QT = Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) for all x ∈ Ω.

K.Brenner, University Paris-Sud XI Dubrovnik, 13-16 October 2008|2



Convection-diffusion problem

We suppose that the following hypotheses are satisfied

(H1) Ω is an open bounded connected polyhedral subset of R
d, d ∈ N \ {0};

(H2) Λ is a measurable function from Ω to Md(R), where Md(R)

denotes the set of d× d symmetric matrices, such that for a.e.

x ∈ Ω the set of its eigenvalues is included in [λ, λ], where λ, λ ∈ L∞(Ω)

are such that 0 < α0 6 λ(x) 6 λ(x);

(H3) V ∈ L2(0, T ;H(div,Ω)) ∩ L∞(QT ) is such that ∇ · V > 0 a.e. in QT ;

(H4) u0 ∈ L∞(Ω);

(H5) f ∈ L2(QT ).
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The possible finite volume schemes

The essential problem is related with the fact that Λ is a full matrix, in such case it is not

possible to use the classical two point discretization.

Possible solutions among the finite volume methods :

Finite Volumes - Finite Elements

(Angot A., Dolejší V., Feistauer M., Felcman j., Vohralík M.)

Idea : Use the dual finite element grid in order approximate the diffusion term.

Multipoint Flux Approximation Methods (MFAM)

(Aavatsmark I., Eigestad G. T., Klausen, R. A.)

Idea : Use several neighbors of the control volume in order to define the diffusive flux ;

Hybride Finite Volume Method

(Eymard R., Gallouët R., Herbin R.)

Idea : Take into account the supplementary unknowns associated with the cell faces.
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Discretization

A discretization of Ω, denoted by D, is defined as the triplet D = (M, E ,P), where :

1. M is a family of control volumes ;

2. E = Eint ∪ Eext is a set of edges ;

3. P = (xK)K∈M is a family of points, such that for all K ∈ M, xK ∈ K and K is

xK -star-shaped.

m(K), the measure of K ∈ M ;

m(σ), the measure of σ ∈ E ;

EK , the set of edges of K ∈ M ;

Mσ, the set of control volumes containing σ ∈ E ;

nK,σ, the unit vector outward to K and normal to σ ∈ EK ;

dK,σ, the Euclidean distance between xK and σ ∈ EK ;

DK,σ , the cone with vertex xK and basis σ ∈ EK .

A time discretization is given by 0 = t0 < t1 . . . < tN = T with the constant time step

k = T/N.
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Discretization

We associate with the mesh the following spaces of discrete unknowns

XD = {((vK)K∈M, (vσ)σ∈E), vK ∈ R, vσ ∈ R}

XD,0 = {v ∈ XD such that (vσ)σ∈Eext = 0},
The space XD is equipped with the semi-norm

|v|2X =
∑

K∈M

∑

σ∈EK

m(σ)

dK,σ

(vσ − vK)2,

which is the norm in XD,0.
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The finite volume scheme

(i) The initial condition for the scheme

u0
K =

1

m(K)

∫

K

u0(x)dx;

(ii) The discrete equations

m(K)(un
K − un−1

K ) + k
∑

σ∈EK

FK,σ(un) + k
∑

σ∈EK

VK,σun
K,σ = m(K)fn

K ∀K ∈ M,

where fn
K =

1

m(K)

∫ tn

tn−1

∫

K

f(x, t)dxdt;

(iii) The local conservation of the total flux

(FK,σ(un) + VK,σun
K,σ) + (FL,σ(un) + VL,σun

L,σ) = 0 for all σ ∈ Eint, Mσ = {K,L};

(iv) The discrete analog of the boundary conditions

un
σ = 0 for all σ ∈ Eext .
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The variational form of the finite volume scheme

We put the scheme (i)-(iv) under the equivalent form

Let u0 is defined by

u0
K =

1

m(K)

∫

K

u0(x) ∀K ∈ M.

For each n ∈ {1, . . . , N} find un ∈ XD,0 such that for all v ∈ XD,0,

∑

K∈M

m(K)vK(un
K − un−1

K ) + k < v, un >F +k < v, un >T =
∑

K∈M

m(K)vKf
n
K ,

where

< v, un >F =
∑

K∈M

∑

σ∈EK

(vK − vσ)FK,σ(un),

and

< v, un >T =
∑

K∈M

∑

σ∈EK

(vK − vσ)VK,σun
K,σ.
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Discretization of the convection term

We define

VK,σ =

∫

σ

V(x) · nK,σ;

let an upwind value un
K,σ be given by

un
K,σ =







un
K , if VK,σ > 0

un
σ , if VK,σ < 0.

We have completely defined the discrete version of the convective term. We give below the

definition of the discret flux FK,σ(un).
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Discretization of the diffusion term

We denote

∇K,σu = ∇Ku+RK,σu · nK,σ,

where

∇Ku =
1

m(K)

∑

σ∈EK

m(σ)(uσ − uK)nK,σ

and where

RK,σu =
αK

dK,σ

(uσ − uK −∇Ku · (xσ − xK)),

with some αK > 0, which should be chosen properly.

Optimization of αK has been studied by O. Angelini, C. Chavant, E. Chenier, R. Eymard.
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Discretization of the diffusion term

We denote

∇K,σu = ∇Ku+RK,σu · nK,σ,

where

∇Ku =
1

m(K)

∑

σ∈EK

m(σ)(uσ − uK)nK,σ

and where

RK,σu =

√
d

dK,σ

(uσ − uK −∇Ku · (xσ − xK)).

The choice αK =
√
d yields the two point scheme in case of meshes which satisfy

nK,σ = xσ−xK

dK,σ
.

Optimization of αK has been studied by O. Angelini, C. Chavant, E. Chenier, R. Eymard.
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The discret gradient ∇Du

We define the discret gradient ∇Du by

∇Du(x) = ∇K,σu x ∈ DK,σ,

where DK,σ is the cone with vertex xK and basis σ ∈ EK , notice that the bilinear form

< v, u >F =
∑

K∈M

∑

σ∈EK

(vK − vσ)FK,σ(u) =

∫

Ω

∇Dv · Λ(x)∇Du

is symmetric. We show in what follows that it is also continuous and coercive.
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Advantages of the scheme

Very general class of meshes ;

Local conservativity ;

The discretization of the convection and diffusion flux does not involve the unk-

nowns outside of the cell ;

One can easily eliminate the cell unknowns uK and then solve the system of card(E)

equations.
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Existence and uniqueness of the discrete solution

Lemma 1 Let D be the discretization of Ω.

(i) There exists C1 > 0 and α > 0 such that

| < u, v >F | 6 C1|u|X |v|X

and

< u, u >F > α|u|2X .

for all u, v ∈ XD.

(ii) There exists C2 > 0 such that

| < u, v >T | 6 C2|u|X |v|X

and

< u, u >T > 0

for all u, v ∈ XD.
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Existence and uniqueness of the discrete solution

The Lemma 1 and the Lax-Milgram Theorem implies the following result

Theorem 1 The discrete problem (i)-(iv) possess the unique solution.

Definition of the approximate solution

Let un ∈ XD,0, n = 1 . . . N , be a solution of the approximate problem, with k = T/N . We

say that the piecewise constant function uh,k is an approximate solution of the problem

(P) if

uh,k(x, 0) = u0
K for all x ∈ K

uh,k(x, t) = un
K for all (x, t) ∈ K × (tn−1, tn].

We also define its gradient by

∇huh,k(x, t) = ∇Du
n(x) for all (x, t) ∈ K × (tn−1, tn].
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A priori estimates

Theorem 2 (A priori estimate) Let uh,k be a solution of the discrete problem, then it is

such that

‖uh,k(·, t)‖L∞(0,T ;L2(Ω)) 6 ‖u0‖L2(Ω) + 2T‖f‖L2(QT ),

λ‖∇huh,k‖2
L2(QT ) 6

1
2
‖u0‖2

L2(Ω) + (‖u0‖L2(Ω) + 2T‖f‖L2(QT ))T‖f‖L2(QT ).

We could show as well the estimates on time and space translates

Theorem 3 Let uh,k be an approximate solution. There exists C > 0 and 0 < ϑ < 1/2,

which do not depend on h and k, such that

‖uh,k(· + y, · + τ) − uh,k‖L2(QT ) 6 C(
√
τ + |y|ϑ)

In view of the Theorem 2, the Fréchet-Kolmogorov Compactness Theorem implies that the

family {uh,k} is relatively compact in L2(QT )
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Convergence results

Theorem 4 Let F be a family of discretizations of Ω and let {uh,k} be a family of

approximate solutions corresponding to F and k = T/N . Then there exist a function u ∈
L2(QT ) such that uh,k → u strongly in L2(QT ) as h, k → 0. Moreover u ∈ L2(0, T ;H1

0 (Ω)),

∇huh,k weakly converge in L2(QT )d to ∇u as h, k → 0 and u is the weak solution of the

problem (P).
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Outline of the proof

Thanks to the a priori estimate there exist some function G ∈ L2(QT )d such that ∇huh,k

weakly converge in L2(QT )d to G as h, k → 0. We show then that G = ∇u, more particulary

∫ T

0

∫

Rd

∇huh,k(x, t) · ψ(x, t)dxdt→ −
∫ T

0

∫

Rd

u(x, t)divψ(x, t)dxdt

for some ψ(x, t) enough regular.
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Outline of the proof

In order to show that u is a weak solution of the problem (P) we introduce the following

functional space

Φ = {ϕ ∈ C2,1(Ω × [0, T ]), ϕ = 0 on ∂Ω × [0, T ], ϕ(·, T ) = 0}.

Let ϕ ∈ Φ, we denote ϕn
K = ϕ(xK , tn) and ϕn

σ = ϕ(xσ, tn), we show in what follows that

N
∑

n=1

∑

K∈M

m(K)(un
K − un−1

K )ϕn
K →

∫

Ω

u0(x)ϕ(x, 0),

N
∑

n=1

k
∑

K∈M

∑

σ∈EK

(ϕn
K − ϕn

σ)FK,σ(un) →
∫ T

0

∫

Ω

∇ϕ(x, t) · Λ(x)∇u(x, t),

N
∑

n=1

k
∑

K∈M

∑

σ∈EK

(ϕn
K − ϕn

σ)VK,σun
K,σ →

∫ T

0

∫

Ω

u(x, t)∇(V(x)ϕ(x, t)).

By density of the set Φ in the set {ϕ ∈ L2(0, T ;H1
0 (Ω)), ϕt ∈ L∞(QT ), ϕ(·, T ) = 0} u is

the weak solution of the continuous problem.
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Numerical test I

We consider a 2D domain Ω = (0, 2) × (0, 1) and T = 1.

0 0.5 1 1.5 2
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1

If x1 6 1 :

Λ =





1 0

0 1



 , V = (3, 0).

If x1 > 1 :

Λ =





8 −7

−7 20



 , V = (3, 12).
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Numerical test I

The initial data and the boundary conditions are given by the continuous exact solution

u(x, t) = ex1+x2−t−3.
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0.2
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Approximate solution (left) and exact solution (right) on a triangular grid at t = 1.
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Numerical test I

Number of time steps N , mesh diameter h, number of unknowns and relative error

Err= max
0<t6T

‖uh,k − u‖L2(Ω)

‖u‖L2(Ω)

for triangular Delaunay and structured quadrangular grids,

respectively

N h Err Unkn. h Err Unkn.

16 0.197642 0.039027 483 0.223607 0.074821 220

32 0.103985 0.021936 1920 0.111803 0.046313 840

64 0.053386 0.014743 7560 0.055902 0.032142 3280

128 0.026758 0.012429 29802 0.027951 0.025171 12960

The problem is diffusion dominated and we observe a linear convergence of the scheme.
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Numerical test II

We consider the problem (P) in the 2-dimensional space domain Ω = (0, 3) × (0, 3) with

scalar diffusion tensor given by

Λ(x) = δ





1 0

0 1





and the constant velocity field

V(x) = (v1, v2).

The initial and boundary conditions are given by the exact solution

u(x, t) =
1

200δt+ 1
e−50

|x−x0−V·t|2

200δt+1 ,

representing a Gaussian peak centered at the point (x0), being transported by the

convective field V and diffusing.

We set V = (0.8, 0.4) and x0 = (0.5, 1.35).
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Numerical test II - Diffusion dominated case

Number of time steps N , mesh diameter h, number of unknowns and L2(Ω) error for δ = 0.1

at t = 2 for triangular Delaunay and structured quadrangular grids, respectively

N h Unkn. ‖uh,k − u‖L2(Ω) h Unkn. ‖uh,k − u‖L2(Ω)

16 0.436 477 0.00942 0.3000 220 0.0092

32 0.222 1927 0.00519 0.1500 840 0.0078

64 0.113 7686 0.00299 0.0750 3280 0.0046

128 0.057 30366 0.00160 0.0375 12960 0.0025

Again, we have a linear convergence.
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Numerical test II - Convection dominated case

Number of time steps N , mesh diameter h, number of unknowns and L2(Ω) error for

δ = 0.001 at t = 2 for triangular Delaunay and structured quadrangular grids, respectively

N h Unkn. ‖uh,k − u‖L2(Ω) h Unkn. ‖uh,k − u‖L2(Ω)

16 0.436 477 0.139 0.3000 220 0.149

32 0.222 1927 0.129 0.1500 840 0.141

64 0.113 7686 0.113 0.0750 3280 0.129

128 0.057 30366 0.091 0.0375 12960 0.112

We see that the numerical diffusion cased by the upwind scheme provides a significant

error.
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Numerical test II - Convection dominated case

How to reduce the numerical diffusion ?

·Use upstream weighting scheme i.e. set the amount of upstream weighting with

respect to the local Péclet number in order to stabilize the scheme by adding only a

necessary numerical diffusion ;

or

·Use some other, less diffusive scheme for the convection term ;

·Use the local grid refitment.
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Thank you for your attention !
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