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H-convergence and G-convergence

Homogenisation:
in the sense of G-convergence (S. Spagnolo) and
H-convergence (F. Murat & L. Tartar)

Recall small-amplitude homogenisation for

−div (A∇u) = f .
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Small-amplitude homogenisation

Consider
−div (An

γ∇un) = f ,

where An
γ is a perturbation of A0 ∈ C(Ω; Md×d), which is bounded from

below; for small γ function An
γ is analytic in γ:

An
γ (x) = A0 + γBn(x) + γ2Cn(x) + o(γ2) ,

where Bn,Cn ∗−−⇀ 0 in L∞(Q; Md×d)).

Then (after passing to a subsequence, if needed)

An
γ

H−−−⇀A∞γ = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in x, and analytic in γ.
A∞γ is the effective conductivity.
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No first-order term on the limit

Theorem. The effective conductivity matrix A∞γ admits the expansion

A∞γ (x) = A0(x) + γ2C0(x) + o(γ2) .

C0 depends only on a subsquence of Bn (and A0), and there is an
explicit formula involving the H-measure of the above subsequence:

−
∫
ϕC0 =

〈
µ, ϕ�

ξ ⊗ ξ

A0ξ · ξ

〉
.

This might provide a precise sense for some formulas in the book by
Landau & Lifschitz.
The method also works on the system of linearised elasticity
(see Tartar’s paper in the Proceedings of SIAM conference in Leesburgh,
Dec 1988)
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Our goal

What can be done for parabolic equations?{
∂t − div (A∇u) = f

u(0, ·) = u0 .

with some boundary conditions.

Things to check:

1. H-convergence and G-convergence (in particular, analytical
dependence of the H-limit on a parameter)

2. Parabolic variant od H-measures

3. What result do we get for small-amplitude homogenisation in this
case (possible applications)
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Known results for elliptic equations

Homogenisation of parabolic equations
H-convergence and G-convergence
H-convergent sequence depending on a parameter

A parabolic variant of H-measures
What are H-measures and variants ?
A brief comparative description

Small-amplitude homogenisation
Setting of the problem (parabolic case)
Variant H-measures in small-amplitude homogenisation



Parabolic problems

If A does not depend on t, the problem reduces to the elliptic case.

For A depending on both t and x, only a few papers (a few more than
three, in fact):

1977 S. Spagnolo: Convergence of parabolic operators

1981 V.V. Žikov et al.: O G-shodimosti paraboličeskih operatorov

1997 A. Dall’Aglio, F. Murat: A corrector result . . .

There are some interesting differences in comparison to the elliptic case.
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Non-stationary diffusion

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

the Gel’fand triple: V ↪→ H ↪→ V ′.
For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′),
W = {u ∈ V : ∂tu ∈ V ′} and H := L2(0, T ;H), again: V ↪→ H ↪→ V ′.
Additionally assume A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1
β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).
With such coefficients the problem is well posed:

‖u‖W 6 c1‖u0‖H + c2‖f‖V′ .



Non-stationary diffusion

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

the Gel’fand triple: V ↪→ H ↪→ V ′.

For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′),
W = {u ∈ V : ∂tu ∈ V ′} and H := L2(0, T ;H), again: V ↪→ H ↪→ V ′.
Additionally assume A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1
β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).
With such coefficients the problem is well posed:

‖u‖W 6 c1‖u0‖H + c2‖f‖V′ .



Non-stationary diffusion

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

the Gel’fand triple: V ↪→ H ↪→ V ′.
For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′),
W = {u ∈ V : ∂tu ∈ V ′} and H := L2(0, T ;H), again: V ↪→ H ↪→ V ′.

Additionally assume A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1
β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).
With such coefficients the problem is well posed:

‖u‖W 6 c1‖u0‖H + c2‖f‖V′ .



Non-stationary diffusion

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

the Gel’fand triple: V ↪→ H ↪→ V ′.
For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′),
W = {u ∈ V : ∂tu ∈ V ′} and H := L2(0, T ;H), again: V ↪→ H ↪→ V ′.
Additionally assume A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1
β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).

With such coefficients the problem is well posed:
‖u‖W 6 c1‖u0‖H + c2‖f‖V′ .



Non-stationary diffusion

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

the Gel’fand triple: V ↪→ H ↪→ V ′.
For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′),
W = {u ∈ V : ∂tu ∈ V ′} and H := L2(0, T ;H), again: V ↪→ H ↪→ V ′.
Additionally assume A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1
β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).
With such coefficients the problem is well posed:

‖u‖W 6 c1‖u0‖H + c2‖f‖V′ .



Parabolic operators

Parabolic operator P ∈ L(W;V ′)

Pu := ∂tu− div (A∇u)

is an isomorphisms of W0 := {u ∈ W : u(0, ·) = 0} onto V ′.

Spagnolo introduced G-convergence for more general parabolic operators:

PA := ∂t +A :W −→ V ′ ,

where (Au)(t) := A(t)u(t), with A(t) ∈ L(V ;V ′) such that for ϕ,ψ ∈ V

t 7→ 〈A(t)ϕ,ψ〉 is measurable

λ0‖ϕ‖2V 6 〈A(t)ϕ,ϕ〉 6 Λ0‖ϕ‖2V
|〈A(t)ϕ,ψ〉| 6M

√
〈A(t)ϕ,ϕ〉

√
〈A(t)ψ,ψ〉 ,

where λ0,Λ0 and M are some positive constants.
The set of all such operators PA we denote by P(λ0,Λ0,M).
For A(t) = −div (A(t, ·), ·) we write PA instead of PA.
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G-convergence and compactness

A sequence PAn
∈ P(λ0,Λ0,M) G-converges to PA (and we write

PAn

G−−−⇀PA) if for any f ∈ V ′

P−1
An
f −⇀ P−1

A f in W0 .

If V ↪→ H ↪→ V ′ (continuous inclusions), if they are also compact,
Spagnolo proved the compactness of G-convergence:

For any PAn ∈ P(λ0,Λ0,M) there is a subsequence PAn′ and a

PA ∈ P(λ0,M
2Λ0,

√
Λ0/λ0M), such that PAn′

G−−−⇀PA.

If each An is of the form: An(t)u = −div (An(t, ·)∇u) , u ∈ V , the
limit is of the same form, where the matrix coefficients A satisfy the
same type of bounds, but with different constants. Also, in such a case,
on the subsequence we have the convergence

An′∇un′ −⇀ A∇u in L2(Q; Rd) .



G-convergence and compactness

A sequence PAn
∈ P(λ0,Λ0,M) G-converges to PA (and we write

PAn

G−−−⇀PA) if for any f ∈ V ′

P−1
An
f −⇀ P−1

A f in W0 .

If V ↪→ H ↪→ V ′ (continuous inclusions), if they are also compact,
Spagnolo proved the compactness of G-convergence:

For any PAn ∈ P(λ0,Λ0,M) there is a subsequence PAn′ and a

PA ∈ P(λ0,M
2Λ0,

√
Λ0/λ0M), such that PAn′

G−−−⇀PA.

If each An is of the form: An(t)u = −div (An(t, ·)∇u) , u ∈ V , the
limit is of the same form, where the matrix coefficients A satisfy the
same type of bounds, but with different constants. Also, in such a case,
on the subsequence we have the convergence

An′∇un′ −⇀ A∇u in L2(Q; Rd) .



G-convergence and compactness

A sequence PAn
∈ P(λ0,Λ0,M) G-converges to PA (and we write

PAn

G−−−⇀PA) if for any f ∈ V ′

P−1
An
f −⇀ P−1

A f in W0 .

If V ↪→ H ↪→ V ′ (continuous inclusions), if they are also compact,
Spagnolo proved the compactness of G-convergence:

For any PAn ∈ P(λ0,Λ0,M) there is a subsequence PAn′ and a

PA ∈ P(λ0,M
2Λ0,

√
Λ0/λ0M), such that PAn′

G−−−⇀PA.

If each An is of the form: An(t)u = −div (An(t, ·)∇u) , u ∈ V , the
limit is of the same form, where the matrix coefficients A satisfy the
same type of bounds, but with different constants. Also, in such a case,
on the subsequence we have the convergence

An′∇un′ −⇀ A∇u in L2(Q; Rd) .



H-convergence

The above motivates the following definition [DM, ŽKO]:

A sequence of matrix functions An ∈M(α, β;Q) H-converges to
A ∈M(α′, β′;Q) if for any f ∈ V ′ and u0 ∈ H the solutions of
parabolic problems {

∂tun − div (An∇un) = f

un(0, ·) = u0 .

satisfy
un −⇀ u in V

An∇un −⇀ A∇u in L2(Q; Rd) .

Moreover, A ∈M(α, β;Q).
H-convergence still has the advantage of the proper choice of bounds
(the limit stays in the chosen set).
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Two remarks

In the definition of H-convergence it is enough to consider u0 = 0.

The parabolic H-convergence is generated by a topology.

X :=
⋃
n∈N

M(
1
n
, n;Q) ,

for f ∈ V ′, define Rf : X −→W0 and Qf : X −→ L2(Q; Rd):

Rf (A) := u , where u solves

{
ut − div (A∇u) = f

u(0, ·) = 0
,

with the weak topology assumed on W0;
and Qf (A) := A∇u, with the weak topology on L2(Q; Rd).
On X, define the weakest topology such that Rf and Qf are continuous.
It is not metrisable.

However, the relative topology on M(α, β;Q) is metrisable.
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Analytical dependence

Theorem. Let P ⊆ R be an open set and the sequence
An : Q× P → Md×d(R) such that An(·, p) ∈M(α, β;Q) for p ∈ P .
Moreover, suppose that p 7→ An(·, p) is analytic mapping from P to
L∞(Q; Md×d(R)).
Then, there exists a subsequence (Ank

) such that for every p ∈ P

Ank
(·, p) H−−⇀ A(·, p) in M(α, β;Q) ,

and p 7→ A(·, p) is analytic mapping from P to L∞(Q; Md×d(R)).
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What are H-measures ?

Objects introduced twenty years ago, by Luc Tartar and
(independently) Patrick Gérard.

To a L2 weakly convergent sequence a measure defined on the product of
physical space (variable x) and the Fourier space (variable ξ — provides
a direction) is associated.

H-measures generalise defect measures: they detect the difference
between strong and weak convergence.
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Why a parabolic variant?

Parabolic equations:
well studied, good theory
known explicit solutions

1 : 2 is a natural ratio to start with

Possible applications to problems involving different scalings,
and easy generalisations to other ratios.

Terminology: classical vs. parabolic or variant H-measures.

These variants were recently introduced by Martin Lazar and N.A.

Notation.
For simplicity (2D): (t, x) = (x0, x1) = x and (τ, ξ) = (ξ0, ξ1) = ξ̂ or F : the Fourier transform with e−2πi(tτ+xξ),
F : the inverse
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For simplicity (2D): (t, x) = (x0, x1) = x and (τ, ξ) = (ξ0, ξ1) = ξ̂ or F : the Fourier transform with e−2πi(tτ+xξ),
F : the inverse



Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ûn|2 along

rays and project to S1

parabolas and project to P 1

τ

ξ1

T

T0

τ

ξ

T

T0

1
2π

In R2 we have a compact surface:

S1 . . . r(τ, ξ) :=
√
τ2 + ξ2 = 1

P 1 . . . ρ(τ, ξ) := 4
√

(2πτ)2 + (2πξ)4 = 1

and a projection of R2
∗ = R2 \ {0} to the surface:

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

π(τ, ξ) :=
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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Analytical view

Multiplication by b ∈ L∞(R2), bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) ,

norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): P̂au = aû.
Norm is again ‖a‖L∞(R2).

Tricky part: a is given only on S1 or P 1.
We extend it by projections, p or π: if α is a function defined on the
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

a(τ, ξ) := α
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)

Now we are ready to state the main theorem.



Analytical view

Multiplication by b ∈ L∞(R2), bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): P̂au = aû.
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Existence of H-measures

Theorem. If un −⇀ 0 in L2(Rd; Rr), then there is a subsequence and
a complex matrix Radon measure µ on

Rd × Sd−1

Rd × P d−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and any

ψ ∈ C(Sd−1)

ψ ∈ C(P d−1)

we have

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ p

π

) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=
∫

Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ)

=
∫

Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ) .
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Immediate properties

I µ = µ∗ (hermitian)

I µ > 0 (positivity)

I un ⊗ un −⇀ ν, then 〈ν, ϕ〉 = 〈µ, ϕ� 1〉
I If un′ · ei have their supports in closed sets Ki ⊆ Rd, then the

support of µei · ej is contained in (Ki ∩Kj)× P d−1.

Martin is going to say more about that tomorrow, and on the differences
in the proofs for different variants.



Immediate properties

I µ = µ∗ (hermitian)

I µ > 0 (positivity)

I un ⊗ un −⇀ ν, then 〈ν, ϕ〉 = 〈µ, ϕ� 1〉
I If un′ · ei have their supports in closed sets Ki ⊆ Rd, then the

support of µei · ej is contained in (Ki ∩Kj)× P d−1.

Martin is going to say more about that tomorrow, and on the differences
in the proofs for different variants.



Known results for elliptic equations

Homogenisation of parabolic equations
H-convergence and G-convergence
H-convergent sequence depending on a parameter

A parabolic variant of H-measures
What are H-measures and variants ?
A brief comparative description

Small-amplitude homogenisation
Setting of the problem (parabolic case)
Variant H-measures in small-amplitude homogenisation



Setting of the problem

A sequence of parabolic problems

(∗)

{
∂tun − div (An∇un) = f

un(0, ·) = u0 .

where An is a perturbation of A0 ∈ C(Q; Md×d), which is bounded from
below;

for small γ function An is analytic in γ:

An
γ (t,x) = A0 + γBn(t,x) + γ2Cn(t,x) + o(γ2) ,

where Bn,Cn ∗−−⇀ 0 in L∞(Q; Md×d)).

Then (after passing to a subsequence if needed)

An
γ

H−−−⇀A∞γ = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in t,x, and analytic in γ.
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No first-order term on the limit

Theorem. The effective conductivity matrix A∞γ admits the expansion

A∞γ (t,x) = A0(t,x) + γ2C0(t,x) + o(γ2) .

Indeed, take u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)), and define

fγ := ∂tu− div (A∞γ ∇u), and u0 := u(0, ·) ∈ L2(Ω).

Next, solve (∗) with An
γ , fγ and u0, the solution unγ .

Of course, fγ and unγ analytically depend on γ.

Because of H-convergence, we have the weak convergences in L2(Q):

(†)
Enγ := ∇unγ −⇀ ∇u
Dn
γ := An

γEnγ −⇀ A∞γ ∇u .

Expansions in Taylor serieses (similarly for fγ and unγ ):

Enγ = En0 + γEn1 + γ2En2 + o(γ2)

Dn
γ = Dn

0 + γDn
1 + γ2Dn

2 + o(γ2) .
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No first-order term on the limit (cont.)

Inserting (†) and equating the terms with equal powers of γ:

En0 = ∇u , Dn
0 = A0∇u

Dn
1 = A0En1 + Bn∇u −⇀ 0 in L2(Q) .

Also, Dn
1 converges to B0∇u (the term in expansion with γ1)

Dn
γ −⇀ A∞γ ∇u = A0∇u+ γB0∇u+ γ2C0∇u+ o(γ2) .

Thus B0∇u = 0, and as u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)) was

arbitrary, we conclude that B0 = 0.
For the quadratic term we have:

Dn
2 = A0En2 + BnEn1 + Cn∇u −⇀ lim BnEn1 = C0∇u ,

and this is the limit we still have to compute.
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1 converges to B0∇u (the term in expansion with γ1)

Dn
γ −⇀ A∞γ ∇u = A0∇u+ γB0∇u+ γ2C0∇u+ o(γ2) .

Thus B0∇u = 0, and as u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)) was

arbitrary, we conclude that B0 = 0.
For the quadratic term we have:

Dn
2 = A0En2 + BnEn1 + Cn∇u −⇀ lim BnEn1 = C0∇u ,

and this is the limit we still have to compute.



Expression for the quadratic correction

For the quadratic term we have:

Dn
2 = A0En2 + BnEn1 + Cn∇u −⇀ lim BnEn1 = C0∇u ,

and this is the limit we shall express using only the parabolic variant
H-measure µ.

un1 satisfies the equation (∗) with coefficients A0, div (Bn∇u) on the
right hand side and the homogeneous innitial condition.

By applying the Fourier transform (as if the equation were valid in the
whole space), and multiplying by 2πiξ, for (τ, ξ) 6= (0, 0) we get

∇̂un1 (τ, ξ) = − (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)(τ, ξ)
2πiτ + (2π)2A0ξ · ξ

.
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Expression for the quadratic correction (cont.)

As (ξ ⊗ ξ)/(2πiτ + (2π)2A0ξ · ξ) is constant along branches of
paraboloids τ = cξ2, c ∈ R, we have (ϕ ∈ C∞c (Q))

lim
n

〈
ϕBn | ∇un1

〉
= − lim

n

〈
ϕ̂Bn | (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)

2πiτ + (2π)2A0ξ · ξ

〉
= −

〈
µ, ϕ

(2π)2ξ ⊗ ξ ⊗∇u
−2πiτ + (2π)2A0ξ · ξ

〉
,

where µ is the parabolic variant H-measure associated to (Bn), a
measure with four indices (the first two of them not being contracted
above).



Expression for the quadratic correction (cont.)

By varying function u ∈ C1(Q) (e.g. choosing ∇u constant on
〈0, T 〉 × ω, where ω ⊆ Ω) we get∫

〈0,T 〉×ω
Cij0 (t,x)φ(t,x)dtdx = −

〈
µij , φ

(2π)2ξ ⊗ ξ

−2πiτ + (2π)2A0ξ · ξ

〉
,

where µij denotes the matrix measure with components
(
µij
)
kl

= µiklj .

Remark. For the periodic example of small-amplitude homogenisation,
we have got the same results by applying the variant H-measures, as with
direct calculations.
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