

The scheme with constraints 000000

Numerical results

Conclusion 00

Scaling Up and Modeling for Transport and Flow in Porous Media, Dubrovnik, Croatia, 13-16 October 2008

A Finite Volume Scheme for diffuson problems on general meshes ensuring monotony constraints

O. Angelini $^{1,2},$ C. Chavant 1,2 , E. Chenier 3 and R. Eymard 3

¹LaMSID - UMR EDF/CNRS 2832 ²EDF R&D, AMA ³MSME, FRE3160 CNRS

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion

Introduction

2 Description of the hybrid finite volume scheme

- Governing equations
- Approximation of the initial problem

3 The scheme with constraints

- Presentation
- Convergence
- Error estimate with ${f \Lambda}({f x})={f I}{f d}$

4 Numerical results

- Presentation of the Test
- Reference results
- Results using the constrained scheme

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

1 Introduction

- 2 Description of the hybrid finite volume scheme
 - Governing equations
 - Approximation of the initial problem
- 3 The scheme with constraints
 - Presentation
 - Convergence
 - Error estimate with $\Lambda(\mathbf{x}) = \mathbf{Id}$
- 4 Numerical results
 - Presentation of the Test
 - Reference results
 - Results using the constrained scheme
- 5 Conclusion

Introduction •	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results 0000	Conclusion 00
Introduction				

- Studies of unsteady and diphasic problems in porous medias.
- Need to respect the maximum principle:
 Let f > 0,
 Let u(x) the solution of the following diffusion problem:

$$\Delta u(x) = f \quad \text{on } \Omega$$
$$u(x) = u_0(x) \quad \text{on } \partial \Omega$$

We suppose that $u_0 \in L^2(\Omega)$ so for all $x \in \Omega$

$$\min\left\{0, \inf_{\Omega} u_0
ight\} \leq u(x) \leq \max\left\{0, \sup_{\Omega} u_0
ight\}$$

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

Introduction

2 Description of the hybrid finite volume scheme

- Governing equations
- Approximation of the initial problem
- 3 The scheme with constraints
 - Presentation
 - Convergence
 - Error estimate with $\Lambda(\mathbf{x}) = \mathbf{Id}$
- 4 Numerical results
 - Presentation of the Test
 - Reference results
 - Results using the constrained scheme
- 5 Conclusion

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion
	00			
Coverning on	ations			

• Let the following heterogeneous anisotropic diffusion problem:

$$\begin{cases} -\operatorname{div}\left(\mathbf{\Lambda}(\mathbf{x})\nabla u(\mathbf{x})\right) &= f(\mathbf{x}) \quad \text{on } \Omega\\ u(\mathbf{x}) &= 0 \quad \text{on } \partial\Omega \end{cases}$$

- Λ(x) can be a highly discontinuous function,
- The mesh can't be too flat.

• The weak formulation of the problem is:

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \mathbf{\Lambda}(\mathbf{x}) \nabla u(\mathbf{x}) . \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega) \end{cases}$$

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion		
	000					
Approximation of the initial problem						

• The scheme consists in finding $u_{\mathcal{D}} \in X_{\mathcal{D},0}$ such that:

$$\langle u_{\mathcal{D}}, v \rangle_{\mathcal{D}, lpha} = \int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}}(v(\mathbf{x})) d\mathbf{x} \quad \forall v \in X_{\mathcal{D}, \mathbf{0}}$$

• With :

$$\begin{aligned} X_{\mathcal{D}} &= \{ v = \left((v_K)_{K \in \mathcal{M}}, (v_{\sigma})_{\sigma \in \mathcal{E}} \right), v_K \in \mathbb{R}, v_{\sigma} \in \mathbb{R} \} \\ X_{\mathcal{D},0} &= \{ u \in X_{\mathcal{D}}, u_{\sigma} = 0, \sigma \in \mathcal{E}_{ext} \} \\ J_{\mathcal{D},\alpha}(v) &= \frac{1}{2} \langle v, v \rangle_{\mathcal{D},\alpha} - \int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}} u(\mathbf{x}) d\mathbf{x} \ , \forall v \in X_{\mathcal{D},0} \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Important issue : to find the expression of the bilinear form $\langle.,.\rangle_{\mathcal{D},\alpha}$

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion
		000000	0000	00
Approximation	of the initial problem			

• The symmetric and coercive bilinear form:

$$\langle u, v \rangle_{\mathcal{D}, \alpha} = \sum_{K \in \mathcal{M}} \left(m_K \nabla_K u . \mathbf{\Lambda}_K \nabla_K v + \alpha_K \sum_{\sigma \in \mathcal{E}_K} m_\sigma d_{K, \sigma} R_{K, \sigma}(u) R_{K, \sigma}(v) \mathbf{n}_{K, \sigma} . \mathbf{\Lambda}_K \mathbf{n}_{K, \sigma} \right)$$

• The discrete gradient:

$$\nabla_{K} u = \frac{1}{m_{K}} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} (u_{\sigma} - u_{K}) \mathbf{n}_{K,\sigma} \quad \forall K \in \mathcal{M}, \forall u \in X_{\mathcal{D}}$$

•
$$R_{K,\sigma}(u) = \frac{u_{\sigma} - u_K - \nabla_K u.(\mathbf{x}_{\sigma} - \mathbf{x}_K)}{d_{K,\sigma}}$$
, $\forall K \in \mathcal{M}, \forall \sigma \in \mathcal{E}_K$

Introduction 0	Description of the hybrid finite volume scheme 000	The scheme with constraints	Numerical results	Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

2 Description of the hybrid finite volume scheme

- Governing equations
- Approximation of the initial problem

3 The scheme with constraints

- Presentation
- Convergence
- Error estimate with ${f \Lambda}({f x})={f Id}$

4 Numerical results

- Presentation of the Test
- Reference results
- Results using the constrained scheme

5 Conclusion

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints •00000	Numerical results	Conclusion
Presentation				

- $\bullet\,$ Quality of the solution may depends on the choice of $\alpha\,$
- An optimal choice of α exists: α will appear as the Lagrangian Multipliers of a monotony condition.
- $R_{K,\sigma}$: a measure of the local curvature of the discrete solution.

$$R_{K,\sigma}(u) = \frac{u_{\sigma} - u_K - \nabla_K u.(\mathbf{x}_{\sigma} - \mathbf{x}_K)}{d_{K,\sigma}}$$

We notice that:

If
$$\begin{cases} u \text{ linear function} \\ u_{\sigma} = u(x_{\sigma}) \\ u_{K} = u(x_{K}) \end{cases}$$
 then $R_{K,\sigma}(u) = 0$

(日)

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints ○●○○○○	Numerical results	Conclusion 00
Presentation				

- Idea: To build a constraint on $R_{K,\sigma}$ in order to decrease the oscillation,
- Practical the constraint is the following:

$$G_{K}^{\mathcal{E}}(v) = \frac{1}{2} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} d_{K,\sigma} \mathbf{n}_{K,\sigma} \cdot \mathbf{\Lambda}_{K} \mathbf{n}_{K,\sigma} R_{K,\sigma}^{2}(v) - m_{K} \varepsilon$$

• We introduce a new constrained space:

$$X_{\mathcal{D},\mathbf{0}}^{\mathcal{E}} = \left\{ v \in X_{\mathcal{D},\mathbf{0}} \ , \ G_K^{\mathcal{E}}(v) \le \mathbf{0}, \ \forall K \in \mathcal{M} \right\}$$

• The initial problem without constraint is:

Find $u_{\mathcal{D}} \in X_{\mathcal{D},0}$ such as: $u_{\mathcal{D}} = argmin_{v \in X_{\mathcal{D},0}} J_{\mathcal{D},\alpha}(v)$

• The new constrained problem is :

Find $u_{\mathcal{D}}^* \in X_{\mathcal{D},0}^{\varepsilon}$ such as: $u_{\mathcal{D}}^* = argmin_{v \in X_{\mathcal{D},0}^{\varepsilon}} J_{\mathcal{D},\beta}(v)$

Characterization of the solution of the constrained problem

Let $\beta = (\beta_K)_{K \in \mathcal{M}}$ be a family of strictly positive reals, let $\varepsilon > 0$.

Then there exists one and only one solution $u_{\mathcal{D}}^*$ to the problem with constraints, which satisfies:

there exists a family of non negative reals $\lambda_{\mathcal{D}}^* = (\lambda_{K,\mathcal{D}}^*)_{K \in \mathcal{M}}$ such as $(u_{\mathcal{D}}^*, \lambda_{\mathcal{D}}^*) \in X_{\mathcal{D},0}^{\varepsilon} \times \mathbb{R}_+^{\mathcal{M}}$ is a saddle point of the function L:

$$L(v,\lambda) = J_{\beta}(v) + \sum_{K \in \mathcal{M}} \lambda_K G_K^{\varepsilon}(v)$$

and the so-called Kuhn and Tucker relations

$$\lambda_{K,\mathcal{D}}^* G_K^{\varepsilon}(u_{\mathcal{D}}^*) = \mathbf{0} \quad , \forall K \in \mathcal{M}$$

The following relation holds:

$$\langle u_{\mathcal{D}}^*, v \rangle_{\mathcal{D}, (\beta + \lambda_{\mathcal{D}}^*)} = \int_{\Omega} f(\mathbf{x}) \mathcal{P}_{\mathcal{M}} v(\mathbf{x}) d\mathbf{x}$$

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion 00
Convergence				
Theore	em			

- Hypothesis :
 - let ${\mathcal D}$ be a discretization of $\Omega,$
 - let $\beta = (\beta_K)_{K \in \mathcal{M}}$ be a family of reals such that $\{\beta_K, K \in \mathcal{M}\} \subset [\underline{\beta}, \overline{\beta}]$,
 - let $\varepsilon_{\mathcal{D}} > 0$ be given,
 - let $u_{\mathcal{D}}^*$ be the unique solution of the constrained problem.

Then

$$u_{\mathcal{D}}^* \to u \text{ in } L^2(\Omega) \text{ as } h_{\mathcal{D}} \to 0 \text{ and } rac{h_{\mathcal{D}}}{\sqrt{\varepsilon_{\mathcal{D}}}} \to 0$$

 $\nabla_{\mathcal{D}} u_{\mathcal{D}}^* \to \nabla u \text{ in } L^2(\Omega)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ntroduction	Description c	of the	hybrid	finite	volume	scheme	The so
							0000

Convergence

Elements of proof: Let $\phi \in C_c^{\infty}(\Omega)$, we get

$$\langle u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi \rangle_{\mathcal{D},\beta} + T_1 \left(u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi \right)^2 = \int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}} P_{\mathcal{D}}\phi(\mathbf{x}) d\mathbf{x}$$

With

$$T_{1}(w,v) = \sum_{K \in \mathcal{M}} \lambda_{\mathcal{D},K}^{*} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} d_{K,\sigma} R_{K,\sigma}(w) R_{K,\sigma}(v) \mathbf{n}_{K,\sigma} \mathbf{\Lambda}_{K} \mathbf{n}_{K,\sigma}$$

•
$$\langle u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi \rangle_{\mathcal{D},\beta}$$
 converges to $\int_{\Omega} \mathbf{\Lambda}(\mathbf{x}) \nabla u(\mathbf{x}) \cdot \nabla \phi(\mathbf{x}) d\mathbf{x}$

- $\int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}} P_{\mathcal{D}} \phi(\mathbf{x}) d\mathbf{x}$ converges to $\int_{\Omega} f(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x}$
- Proof of T_1 tends to 0:
 - The Cauchy-Schwarz inequality,
 - The consistency of $R_{K,\sigma}(P_{\mathcal{D}}\phi)$
 - The estimate on the solution of the constrained scheme:

$$\|u_{\mathcal{D}}^*\|_{1,\mathcal{D}} \le \frac{\|f\|_{L^2(\Omega)} C_1}{\alpha_0}$$

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints ○○○○○●	Numerical results	Conclusion	
Error estimate with $\Lambda(\mathbf{x}) = \mathbf{Id}$					
Theore	em				

We assume that $\Lambda(\mathbf{x}) = \mathbf{Id}$. We assume also that the weak solution u satisfies $u \in C^2(\overline{\Omega})$ and we consider the same hypothesis as previously.

Then there exists C_2 depending only on $d, \Omega, \theta, \underline{\alpha}, \overline{\alpha}$ and u such that:

$$\|u_{\mathcal{D}}^* - P_{\mathcal{D}}(u)\|_{1,\mathcal{D}} \le C_2 \left(\frac{h_{\mathcal{D}}}{\sqrt{\varepsilon_{\mathcal{D}}}} + h_{\mathcal{D}}^2\right)^{\frac{1}{2}}$$

there exists C_3 depending only on $d, \Omega, \theta, \underline{\alpha}, \overline{\alpha}$ and u such that:

$$\|P_{\mathcal{M}}u_{\mathcal{D}}^* - u\|_{L^2(\Omega)} \le C_3 \left(\frac{h_{\mathcal{D}}}{\sqrt{\varepsilon_{\mathcal{D}}}} + h_{\mathcal{D}}^2\right)^{\frac{1}{2}}$$

and there exists C_4 depending only on $d, \Omega, \theta, \underline{\alpha}, \overline{\alpha}$ and u such that:

$$\|\nabla_{\mathcal{D}} u_{\mathcal{D}}^* - \nabla u\|_{L^2(\Omega)^d} \le C_4 \left(\frac{h_{\mathcal{D}}}{\sqrt{\varepsilon_{\mathcal{D}}}} + h_{\mathcal{D}}^2\right)^{\frac{1}{2}}$$

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion

Introduction

- 2 Description of the hybrid finite volume scheme
 - Governing equations
 - Approximation of the initial problem
- 3 The scheme with constraints
 - Presentation
 - Convergence
 - Error estimate with $\Lambda(\mathbf{x}) = \mathbf{Id}$

4 Numerical results

- Presentation of the Test
- Reference results
- Results using the constrained scheme

Test 3 of the Benchmark on "discretization schemes for anisotropic diffusion problems on general grids"*: oblique flow

• Heterogeneous anisotropic tensor ($\theta = 40^{\circ}$):

$$\Lambda = R_{\theta} \left(\begin{array}{cc} 1 & 0 \\ 0 & 10^{-3} \end{array} \right) R_{\theta}^{-1},$$

• Heterogeneous boundaries conditions are continuous and piecewise linear:

• Using the Uzawa's algorithm (the problem without constraint substituting α by $\beta + \lambda$)

(日)

* Raphaele Herbin and Florence Hubert,2008

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion	
		000000	0000		
Reference results					

Values of the pressure using the non-constrained scheme on a grid with 65536 control volumes.

◆□> <□> <=> <=> <=> <=> <=> <=> <<=>

Introduction Description of the hybrid finite volume scheme

The scheme with constraints 000000

Numerical results Conclusion

<=> = = = <<<>></></>

Results using the constrained scheme

Results using the constrained scheme on a grid with 1024 control volumes.

- Comparison with the solution on a fine grid shows an acceptable accuracy,
- The value of λ is increased only where it is needed.

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion	
			0000		
Desults using the exection ad exposes					

Influence of the constraint on the solution

Profile at y = 0.0469 using a grid with 1024 control volumes.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

• High decrease of pressure oscillations

Introduction	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

- 2 Description of the hybrid finite volume scheme
 - Governing equations
 - Approximation of the initial problem
- 3 The scheme with constraints
 - Presentation
 - Convergence
 - Error estimate with $\Lambda(\mathbf{x}) = \mathbf{Id}$
- 4 Numerical results
 - Presentation of the Test
 - Reference results
 - Results using the constrained scheme

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion ●0
Conclusion				

- We propose a method which makes it possible to increase the monotony of the solution,
- We propose a mathematical analysis,
- Finally, we show some numerical results which are in agreement with the theoretical analysis.

References :

- R. Eymard, R. Gallouët and R. Herbin, "A new finite volume scheme for anisotropic diffusion problems on general grids : convergence analysis", C.R.Acad.Sci.Paris, 2007
- R. Eymard, R. Gallouët and R. Herbin, "Discretization schemes for heterogeneous and anisotropic diffusion problems on general non conforming meshes", Submitted, 2008

Introduction 0	Description of the hybrid finite volume scheme	The scheme with constraints	Numerical results	Conclusion O
Conclusion				

Thanks for your attention !!!!

・ロト < 回ト < 三ト < 三ト < 三日 < つへの

6 Appendix

• Proof of the convergence

- Lagrange multipliers
- Uzawa's algorithm

Proof of the convergence

Let
$$\phi \in C_c^{\infty}(\Omega)$$
, we get
 $\langle u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi \rangle_{\mathcal{D},\beta} + T_1(u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi) = \int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}} P_{\mathcal{D}}\phi(\mathbf{x}) d\mathbf{x}$

With

$$T_{1}(w,v) = \sum_{K \in \mathcal{M}} \lambda_{\mathcal{D},K}^{*} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} d_{K,\sigma} R_{K,\sigma}(w) R_{K,\sigma}(v) \mathbf{n}_{K,\sigma} \mathbf{\Lambda}_{K} \mathbf{n}_{K,\sigma}$$

We have that

$$\langle u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi \rangle_{\mathcal{D},\beta}$$
 converges to $\int_{\Omega} \mathbf{\Lambda}(\mathbf{x}) \nabla u(\mathbf{x}) \cdot \nabla \phi(\mathbf{x}) d\mathbf{x}$
 $\int_{\Omega} f(\mathbf{x}) P_{\mathcal{M}} P_{\mathcal{D}}\phi(\mathbf{x}) d\mathbf{x}$ converges to $\int_{\Omega} f(\mathbf{x})\phi(\mathbf{x}) d\mathbf{x}$

So we must prove that $T_1(u_D^*, P_D\phi)$ tends to 0.

• We apply the cauchy-Schwartz inequality :

$$T_1\left(u_{\mathcal{D}}^*, P_{\mathcal{D}}\phi\right)^2 \le T_1\left(u_{\mathcal{D}}^*, u_{\mathcal{D}}^*\right) T_1\left(P_{\mathcal{D}}\phi, P_{\mathcal{D}}\phi\right)$$

• Thanks to the consistency of $R_{K,\sigma},$ we have that there exists C_5 depending only on $d,~\theta$ and Ω such as :

$$|R_{K,\sigma}(P_{\mathcal{D}}\phi)| \le C_5 h_{\mathcal{D}}$$

So

$$T_1(P_{\mathcal{D}}\phi, P_{\mathcal{D}}\phi) \le C_5^2 h_{\mathcal{D}}^2 \overline{\lambda} \sum_{K \in \mathcal{M}} \lambda_K^* m_K$$

• Thanks to the following estimate on the solution of the constrained scheme if (u_D^*, λ_D^*) is the saddle point

$$\sum_{K \in \mathcal{M}} \lambda_K^* m_K \le \|f\|_{L^2(\Omega)}^2 \frac{C_1^2}{2\alpha_0 \varepsilon}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

• Thus we have:

$$T_1 \left(P_{\mathcal{D}} \phi, P_{\mathcal{D}} \phi \right)^2 \le C_6 \frac{h_{\mathcal{D}}^2}{\varepsilon}$$

Hence, under the condition that $\frac{h_D}{\sqrt{\varepsilon_D}}$ tends to 0, we get that $T_1(u_D, P_D\phi)$ tends to 0 as well.

The complete proof was made in :

- R. Eymard, R. Gallouët and R. Herbin, "A new finite volume scheme for anisotropic diffusion problems on general grids : convergence analysis", C.R.Acad.Sci. Paris, 2007
- *R. Eymard, R. Gallouët and R. Herbin, "Discretization schemes for heterogeneous and anisotropic diffusion problems on general non conforming meshes, Submitted, 2008*

Theorem (Lagrange multipliers 1/2)

Let:

- V a finite dimensional euclidean space
- K the convex closed non empty subset of V, defined by

$$K = \{ v \in V, G_i(v) \le 0, \text{ for } 1 \le i \le p \},$$

- G_i : $V \rightarrow \mathbb{R}$ convex, continuously and differentiable
- $J: V \to \mathbb{R}$ strictly convex function such that $\lim_{|u|\to\infty} J(u) = +\infty$
- u^{\star} the unique solution of the minimization problem

$$u^{\star} = argmin_{u \in K} J(u)$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

Theorem (Lagrange multipliers 2/2)

Then:

 $\exists \ \beta^{\star} \ \text{such as} \ (u^{\star},\beta^{\star}) \ \text{saddle point of} \ \mathcal{L} \ : \ V \times I\!\!R^p \to I\!\!R \ \text{defined by}$

$$\mathcal{L}(u,\beta) = J(u) + \sum_{i=1}^{p} \beta_i G_i(u)$$

Moreover, the so-called Kuhn and Tucker relations hold:

$$\begin{cases} \nabla J(u^{\star}) + \sum_{i=1}^{p} \beta_i^{\star} \nabla G_i(u^{\star}) = \mathbf{0}, \\ \beta_i^{\star} G_i(u^{\star}) = \mathbf{0}, \ \forall i = 1, \dots, p, \end{cases}$$
(1)

are satisfied. Reciprocally, if there exists (u^*, β^*) such that relations (1) are satisfied, then $u^* = argmin_{u \in K}J(u)$ and (u^*, β^*) is a saddle point of \mathcal{L} .

Uzawa's algorithm

The aim is to find an approximation of the solution u^* of the minimization problem.

Let $\rho >$ 0, we define (u^n, β^n) , $\forall i = 1, \dots, p, \ \forall n \in \mathbb{N}$ by

$$egin{array}{lll} u^n&=argmin_{u\in V}\mathcal{L}(u,eta^n)\ eta_i^{(n+1)}&=\max(eta_i^n+
ho G_i(u^n),0) \end{array}$$

(日)

Uzawa's algorithm

Theorem (Convergence of Uzawa's algorithm 1/2)

Let:

- V a finite dimensional euclidean space
- K the convex closed non empty subset of V, defined by

$$K = \{ v \in V, G_i(v) \le 0, \text{ for } 1 \le i \le p \},\$$

- G_i : $V \rightarrow \mathbb{R}$ convex, continuously and differentiable
- $J : V \to \mathbb{R}$ continuously differentiable function such that there exists $\alpha > 0$ with

$$(\nabla J(u) - \nabla J(v), u - v) \ge \alpha ||u - v||^2, \ \forall u, v \in V,$$
(2)

• $M = \max\{\sum_{i=1}^{p} \|\nabla G_i(u)\|^2, \|u\| \le B\}$ We assume: $\exists B \ge 0: \forall \beta \in (\mathbb{R}_+)^p, \|argmin_{u \in V} \mathcal{L}(u, \beta)\| \le B.$

Theorem (Convergence of Uzawa's algorithm 2/2)

Then for all $\rho \in (0, \frac{\alpha}{2M})$ and for all $\beta^{(0)} \in (I\!R_+)^p$, the sequence defined by

$$egin{array}{lll} u^n&=argmin_{u\in V}\mathcal{L}(u,eta^n)\ eta_i^{(n+1)}&=\max(eta_i^n+
ho G_i(u^n),0) \end{array}$$

is such that $(u^n)_{n \in \mathbb{N}}$ converges to the solution u^{\star} of

$$u^{\star} = argmin_{u \in K} J(u)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・