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C ∗-algebras - definition and basic properties

A C ∗-algebra is a complex Banach ∗-algebra A whose norm ∥ · ∥ satisfies
the C ∗-identity

∥a∗a∥ = ∥a∥2, for all a ∈ A.

The C ∗-identity is a very strong requirement. For instance, for any a ∈ A
let σ(a) denote the spectrum of a, i.e.

σ(a) := {λ ∈ C : λ1− a is not invertible in A}.

Then the C ∗-identity combined with the spectral radius formula

r(a) := max{|λ| : λ ∈ σ(a)} = lim
n→∞

∥an∥
1
n ,

implies that the C ∗-norm is uniquely determined by the algebraic structure:

∥a∥2 = ∥a∗a∥ = r(a∗a) = max{|λ| : λ ∈ σ(a∗a)}.
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In the category of C ∗-algebras, the natural candidates for morphisms are
the ∗-homomorphisms, i.e. the algebra homomorphisms which which
preserve the involution. Basic properties:

they are automatically contractive (isometric if injective), and

their image is a C ∗-subalgebra of the codomain C ∗-algebra.
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Basic examples

To any LCH (locally compact Hausdorff) space one can associate a
commutative C ∗-algebra C0(X ) of all continuous functions f : X → C
that vanish at infinity, with respect to the pointwise operations,
involution f ∗(x) := f (x), and sup-norm ∥f ∥∞ := supx∈X |f (x)|.
The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn(C) are C ∗-algebras. In fact, the finite direct sums of matrix
algebras over C make up all finite-dimensional C*-algebras.

To any LC group G , one can associate a C ∗-algebra C ∗(G ).
Everything about the representation theory of G is encoded in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(C ∗-)tensor products, etc.
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In fact, all commutative C ∗-algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor X ⇝ C0(X ) defines an equivalence of
categories of LCH spaces (with proper continuous maps as morphisms)
and commutative C ∗-algebras (with non-degenerate ∗-homomorphisms as
morphisms).

In other words: By passing from the space X the function algebra C0(X ),
no information is lost. In fact, X can be recovered from C0(X ). Thus,
topological properties of X can be translated into algebraic properties of
C0(X ), and vice versa. Therefore, the theory of C ∗-algebras is often
thought of as noncommutative topology.
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Representations of C ∗-algebras

A representation of a C ∗-algebra A is a ∗-homomorphism π : A → B(H)
for some Hilbert space H. A representation π is said to be irreducible if it
has no nontrivial (closed) invariant subspaces (i.e. if K is a (closed)
subspace of H such that π(A)K ⊆ K, then K = {0} or K = H).

Theorem (General Gelfand-Naimark theorem, 1943)

Any C ∗-algebra admits an injective (hence isometric) representation on
some Hilbert space.

Because of the previous theorem, C ∗-algebras can be concretely defined to
be norm closed self-adjoint subalgebras of bounded operators on some
Hilbert space H.
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The primitive spectrum of a C ∗-algebra

Let A be C ∗-algebra.

A primitive ideal of A is an ideal which is the kernel of an irreducible
representation of A.

The primitive spectrum of A is the set Prim(A) of primitive ideals
of A equipped with the Jacobson (hull-kernel) topology: if S is a
set of primitive ideals, its closure is

S :=

P ∈ Prim(A) : ker S =
⋂
Q∈S

Q ⊆ P

 .

Example - commutative case

If A = C0(X ) and x ∈ X , let Px := {f ∈ C0(X ) : f (x) = 0}. Then
Prim(C0(X )) = {Px : x ∈ X}. Moreover, the correspondence x 7→ Px

defines a homeomorphism between X and Prim(C0(X )).
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Properties of Prim(A)

Prim(A) is always a locally compact and is compact if A is unital.

If A is separable, Prim(A) is second countable.

However, as a topological space, Prim(A) is in general badly behaved
and may satisfy only the T0-separation axiom.

When a C ∗-algebra A is unital, the Jacobson topology on Prim(A) not
only describes the ideal structure of A, but also allows us to completely
describe its centre Z (A) = {z ∈ A : za = az}:

Dauns-Hofmann Theorem, 1968

Let A be a unital C ∗-algebra. Then there is a ∗-isomorphism
ΨA : Z (A) → C (Prim(A)) such that

z + P = ΨA(z)(P)1 + P

for all f ∈ C (Prim(A)), a ∈ A and P ∈ Prim(A).
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The Dixmier property and weak centrality

Preliminaries

Throughout A will be a C ∗-algebra with centre Z (A) and unitary
group U(A) = {u ∈ A : u∗u = uu∗ = 1} (if A is unital).

By an ideal of A we always mean a closed two-sided ideal. We denote
by Ideal(A) the set of all (closed two-sided) ideals of A.

By S(A) we denote the set of all states on A (i.e. positive linear
functionals ω : A → C of norm 1) equipped with the relative
w∗-topology.

A state τ ∈ S(A) is said to be tracial if τ(xy) = τ(yx) ∀x , y ∈ A.

By T (A) we denote the set of all tracial states on A. If A is unital
then T (A) is a convex w∗-compact subset of S(A).
By ∂eT (A) we denote the extreme boundary of T (A), so that T (A)
is equal to the closed convex hull of ∂eT (A) (by the Krein-Milman
theorem).
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A unitary mixing operator on A is a map ϕ : A → A of the form

ϕ(x) =
n∑

i=1

tiu
∗
i xui ,

where n is a positive integer, u1, . . . , un ∈ U(A) and t1, . . . , tn
non-negative real numbers such that t1 + . . .+ tn = 1. The set of all
such maps is denoted by UM(A).

The Dixmer property and weak centrality

Let A be a unital C ∗-algebra.

For an element a ∈ A the Dixmier set DA(a) is defined as the
norm-closure of the set {ϕ(a) : ϕ ∈ UM(A)}. Then A is said to have
the Dixmier property (DP) if

DA(a) ∩ Z (A) ̸= ∅, ∀a ∈ A.

A is said to be weakly central (WC) if for any pair of maximal ideals
M1 and M2 of A, M1 ∩ Z (A) = M2 ∩ Z (A) implies M1 = M2.
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Important properties

DP =⇒ WC (Archbold 1972).

All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).

A unital simple C ∗-algebra satisfies DP iff it admits at most one
tracial state (Haagerup-Zsidó 1984). In particular, WC ≠⇒ DP.

A complete characterization of C ∗-algebras with DP was obtained recently.

Theorem (Archbold-Robert-Tikuisis, 2017)

A unital C ∗-algebra A has DP iff all of the following hold:

A is WC.

Every simple quotient of A has at most one tracial state.

Every extreme tracial state of A factors trough some simple quotient.

Corollary

A unital postliminal C ∗-algebra has DP iff it is WC.
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Corollary

For a unutal C ∗-algebra A the following conditions are equivalent:

Z (A) = C1 and A has DP.

A has a unique maximal ideal M, A (or A/M) has at most one tracial
state and M has no tracial states.

The Dixmier’s example

Let H be a separable infinite-dimensional Hilbert space and let p ∈ B(H)
be any projection with infinite-dimensional kernel and image. Set

A := K(H) + Cp + C(1− p) ⊂ B(H).

Then Z (A) = C1, A has precisely two maximal ideals, namely

M1 := K(H) + Cp and M2 := K(H) + C(1− p),

and obviously M1 ∩ Z (A) = M2 ∩ Z (A) = {0}. Hence, A is not WC.
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In 2008 Magajna gave a characterisation of weak centrality in terms of
more general averaging which are defined as follows.

EUCP operators and the Magajna set

By an elementary unital completely positive operator on a unital
C ∗-algebra A we mean a map ϕ : A → A of the form

ϕ(x) =
n∑

i=1

a∗i xai ,

where n ∈ N, a1, . . . , an ∈ A such that
∑n

i=1 a
∗
i ai = 1. The set of all

such maps on A is denoted by EUCP(A).

For a ∈ A we define the Magajna set MA(a) as the norm-closure of
the set {ϕ(a) : ϕ ∈ EUCP(A)} (i.e. the closed C ∗-convex hull of a).
Obviously DA(a) ⊆ MA(a) for any a ∈ A.

Theorem (Magajna, 2008)

A unital C ∗-algebra A is WC iff MA(a) ∩ Z (A) ̸= ∅ for all a ∈ A.
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On the other hand, in 1971 Vesterstrøm gave a different characterization
of weak centrality of A in terms of the quotient images of Z (A).

The centre-quotient property

If J ∈ Ideal(A) it is immediate that

(Z (A) + J)/J = qJ(Z (A)) ⊆ Z (A/J),

where qJ : A → A/J is the canonical map.

A is said to have the centre-quotient property (CQP) if the equality
holds above for any J ∈ Ideal(A).

Theorem (Vesterstrøm, Math. Scand. 1971)

A unital C ∗-algebra is WC iff it has CQP.

Example

If A = K(H) + Cp + C(1− p) ⊂ B(H) is the Dixmier C ∗-algebra, then
Z (A) = C1, while Z (A/K(H)) = A/K(H) ∼= C⊕ C.
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We would like to investigate in what extent an arbitrary C ∗-algebra fails to
satisfy WC/CQP and DP. We proceed in two different ways:

Global apporach

Show that any C ∗-algebra A has the largest WC ideal Jwc(A) and the
largest ideal Jdp(A) with DP, and obtain their concrete descriptions.

Local apporach

Consider individual elements of A which witness DP and WC/CQP. We
define an element a ∈ A to be:

- a Dixmier element if DA(a) ∩ Z (A) ̸= ∅;
- a Magajna element if MA(a) ∩ Z (A) ̸= ∅;
- a CQ-element if for any ideal J of A, a+ J ∈ Z (A/J) implies
a ∈ Z (A) + J.

By Dix(A), Mag(A) and CQ(A) we respectively denote the sets of all
Dixmier, Magajna and CQ-elements of A. Obviously A has DP iff
Dix(A) = A, while A is WC/has CQP iff Mag(A) = CQ(A) = A.
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satisfy WC/CQP and DP. We proceed in two different ways:

Global apporach

Show that any C ∗-algebra A has the largest WC ideal Jwc(A) and the
largest ideal Jdp(A) with DP, and obtain their concrete descriptions.

Local apporach

Consider individual elements of A which witness DP and WC/CQP. We
define an element a ∈ A to be:

- a Dixmier element if DA(a) ∩ Z (A) ̸= ∅;
- a Magajna element if MA(a) ∩ Z (A) ̸= ∅;
- a CQ-element if for any ideal J of A, a+ J ∈ Z (A/J) implies
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Global approach
We begin by extending the definition of WC and DP for non-unital
C ∗-algebras in the obvious way: We say that a non-unital C ∗-algebra A is
WC/has DP if its minimal unitization A♯ = A⊕ C1 has the same property.

Modular maximal ideals

An ideal J of A is said to be modular if the algebra A/J is unital.

Any proper modular ideal of A (if such exists) is contained in some
modular maximal ideal of A and all modular maximal ideals of A are
primitive. By Max(A) we denote the set of all modular maximal
ideals of A, so that Max(A) ⊆ Prim(A).

Max(A) can be empty (e.g. the algebra A = K(H) of compact
operators on a separable infinite-dimensional Hilbert space H).

If A is unital, both spaces Prim(A) and Max(A) are compact.

For any J ∈ Ideal(A) we define MaxJ(A) for the set of all modular
maximal ideals of A that contain J. The space MaxJ(A) is canonically
homeomorphic to Max(A/J) via the assignment M 7→ M/J.
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Theorem (Archbold-G, 2022)

For any C ∗-algebra A the following conditions are equivalent:

A is WC.

No modular maximal ideal of A contains Z (A) and for all
M1,M2 ∈ Max(A), M1 ∩ Z (A) = M2 ∩ Z (A) implies M1 = M2.

A has CQP.

Further, the class of WC C ∗-algebras is closed under forming ideals,
quotients, direct sums and C ∗-tensor product. Moreover if A1 and A2 are
C ∗-algebras then A1 ⊗β A2 is WC for some/every C ∗-norm β iff both A1

and A2 are WC.

It is possible to show that every C ∗-algebra contains a largest ideal with
CQP by using Zorn’s lemma and the fact that the sum of two ideals with
CQP has CQP.
However, we take a different approach that has the merit of obtaining a
formula for this ideal in terms of the set of those modular maximal ideals
of A which witness the failure of the weak centrality of A.
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Theorem (Archbold-G, 2022)

Let A be a C ∗-algebra and TA the set of all M ∈ Max(A) such that either

Z (A) ⊆ M, or

there is N ∈ Max(A) such that M ̸= N, Z (A) ⊈ M,N and
M ∩ Z (A) = N ∩ Z (A).

Then Jwc(A) := kerTA is the largest weakly central ideal of A.

Example

If A = K(H) +Cp+C(1− p) ⊂ B(H) is the Dixmier’s example, then
Jwc(A) = (K(H) + Cp) ∩ (K(H) + C(1− p)) = K(H).

If G is either the free group on two generators F2 or the discrete
three-dimensional Heisenberg group

H3 =

{(
1 a c
0 1 b
0 0 1

)
: a, b, c ∈ Z

}
,

then for A = C ∗(G ) we have Jwc(A) = {0}.
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By using Zorn’s lemma, in 1972 Archbold showed that any unital
C ∗-algebra A contains the largest ideal Jdp(A) with DP. We now describe
Jdp(A) more explicitly. But first we recall the notion of Glimm ideals.

Glimm ideals in unital C ∗-algebras

The Glimm ideals of a unital C ∗-algebra A are the ideals of A generated
by the maximal ideals of Z (A). Notation: Glimm(A).

The correspondence

Glimm(A) ∋ N 7−→ N ∩ Z (A) ∈ Max(Z (A))

is a bijection. Its inverse is given by

Max(Z (A)) ∋ J 7−→ JA ∈ Glimm(A),

and no closure operation is required, by the Hewitt–Cohen factorization
theorem. Via this identification, we equip Glimm(A) with the compact
Hausdorff topology inherited from Max(Z (A)).
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Ilja Gogić (University of Zagreb) Dixmier property and weak centrality SAFA, Ljubljana, 2026 19 / 30



By using Zorn’s lemma, in 1972 Archbold showed that any unital
C ∗-algebra A contains the largest ideal Jdp(A) with DP. We now describe
Jdp(A) more explicitly. But first we recall the notion of Glimm ideals.

Glimm ideals in unital C ∗-algebras

The Glimm ideals of a unital C ∗-algebra A are the ideals of A generated
by the maximal ideals of Z (A). Notation: Glimm(A).

The correspondence

Glimm(A) ∋ N 7−→ N ∩ Z (A) ∈ Max(Z (A))

is a bijection. Its inverse is given by

Max(Z (A)) ∋ J 7−→ JA ∈ Glimm(A),

and no closure operation is required, by the Hewitt–Cohen factorization
theorem. Via this identification, we equip Glimm(A) with the compact
Hausdorff topology inherited from Max(Z (A)).
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Now consider the set X ⊆ Glimm(A) of Glimm ideals N such that
A/N has DP and a trivial centre.

This is equivalent to saying that N is contained in a unique maximal
ideal MN of A, that A/N has at most one tracial state and that if
A/N does have a tracial state then it factors through A/MN .

For N ∈ Glimm(A)\X define

IN := kerMaxN(A) ∩ ker{Iτ : τ ∈ T (A/N)}

where, for τ ∈ T (A/N), Iτ is the corresponding trace-kernel, i. e.

Iτ := {a ∈ A : τ(a∗a+ N) = 0}.

Theorem (Archbold-G-Robert, 2023)

We have
Jdp(A) = ker{IN : N ∈ Glimm(A)\X}.
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Ilja Gogić (University of Zagreb) Dixmier property and weak centrality SAFA, Ljubljana, 2026 20 / 30



Local approach

Recall, if a ∈ A then:

a ∈ Dix(A) if DA(A) ∩ Z (A) ̸= ∅
a ∈ Mag(A) if MA(A) ∩ Z (A) ̸= ∅.
a ∈ CQ(A) if for any ideal J of A, a+ J ∈ Z (A/J) implies
a ∈ Z (A) + J.

We always have
Dix(A) ⊆ Mag(A) ⊆ CQ(A).

Dix(A) always contains Z (A) + Jdp(A), all self-commutators [a∗, a]
and all quasinilpotents. In particular, Dix(A) = Z (A) iff A is abelian.

Mag(A) always contains Z (A) + Jwc(A) and all products ab where a
or b is quasinilpotent.

CQ(A) always contains all commutators [a, b]. There are C ∗-algebras
A such that [a, b] /∈ Mag(A) for some a, b ∈ A.
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We always have

span(Mag(A)) = span(CQ(A)) = Z (A) + Ideal([A,A]).

On the other hand, when sets CQ(A) and Mag(A) coincide, A is not far
from being WC. On the other hand, when this fails, both sets dramatically
fail to be C ∗-subalgebras of A:

Theorem (Archbold-G, 2022 & Archbold-G-Robert, 2023)

The following conditions are equivalent:

Mag(A) = CQ(A).

Mag(A) = CQ(A) = Z (A) + Jwc(A).

A/Jwc(A) is abelian.

Mag(A) and/or CQ(A) is closed under addition.

Mag(A) and/or CQ(A) is closed under multiplication.

Mag(A) is closed under EUCP operators.

CQ(A) is norm-closed.
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We also exhibited examples of (separable continuous trace) C ∗-algebras A
for which Jwc(A) = {0}, while CQ(A) is norm-dense in A.

In order to identify the set CQ(A) we shall need the following result:

Theorem (Archbold-G, 2022)

Let A be a unital C ∗-algebra and let J be an ideal of A. A central element
ż of A/J can be lifted to a central element of A iff

ΨA/J(ż)(P1/J) = ΨA/J(ż)(P2/J)

for all P1,P2 ∈ Prim(A) that contain J and P1 ∩ Z (A) = P2 ∩ Z (A).

Theorem (Archbold-G, 2022)

An element a ∈ A belongs to A \ CQ(A) iff one of the following holds:

there exists M ∈ Max(A) such that Z (A) ⊆ M and a+M is a
non-zero scalar in A/M;

there exist M1,M2 ∈ Max(A) and scalars λ1 ̸= λ2 such that
Z (A) ̸= M1 ∩ Z (A) = M2 ∩ Z (A) and a+Mi = λi1A/Mi

(i = 1, 2).
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Ilja Gogić (University of Zagreb) Dixmier property and weak centrality SAFA, Ljubljana, 2026 23 / 30



We also exhibited examples of (separable continuous trace) C ∗-algebras A
for which Jwc(A) = {0}, while CQ(A) is norm-dense in A.

In order to identify the set CQ(A) we shall need the following result:

Theorem (Archbold-G, 2022)

Let A be a unital C ∗-algebra and let J be an ideal of A. A central element
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On the other hand, a complete description of Dix(A) and Mag(A) is in
general difficult to obtain. This has led us to also consider the sets

Mag(A) = {a ∈ A : dist(MA(a),Z (A)) = 0},
Dix(A) = {a ∈ A : dist(DA(a),Z (A)) = 0}.

These are more tractable sets (e.g. they are norm-closed). We have

Dix(A)
⊆

Dix(A)
⊆

⊆
Mag(A) ⊆ CQ(A).

Mag(A)
⊆

Also note that A has DP iff Dix(A) = A and A is WC iff Mag(A) = A.
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Numerical range

Given a ∈ A the (algebraic) numerical range of a is defined as
WA(a) := {ω(a) : ω ∈ S(A)}. It is a compact convex subset of C that
contains σ(a). If a is normal then WA(a) is the convex hull of σ(a).

Theorem (Magajna, 2000)

Let a ∈ A. A normal element b ∈ A belongs to MA(a) iff
WA/P(b + P) ⊆ WA/P(a+ P) for each P ∈ Prim(A).

Theorem (Archbold-G-Robert, 2023)

For any a ∈ A we have a ∈ Mag(A) iff for all N ∈ Glimm(A),

Λa(N) :=
⋂

M∈MaxN(A)

WA/M(a+M) ̸= ∅.

Further, if a is self-adjoint, then a ∈ Mag(A) iff a ∈ Mag(A).
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Example

Let B = K(H) + Cp + C(1− p) be the Dixmier C ∗-algebra and let
A = C ([−1, 1],M2(C))⊗ B. We define elements a, b ∈ A as:

a(t) :=

(
1 0
0 −1

)
, b(t) :=

(
α(t) 0
0 β(t)

)
,

where α(t) and β(t) are curves in the plane such that:

From t = −1 to t = 0 the interval [α(t), β(t)] starts at [−1,−1+ 2i ],
remains pinned at −1 while rotating till it is flat and equal to [−1, 1]
at t = 0.

Then from t = 0 to t = 1 the interval [α(t), β(t)] is pinned at 1, and
rotates till it stops at [1, 1 + 2i ].

If c ∈ A defined as
c := a⊗ p + b ⊗ (1− p),

then c is a normal element of A such that c ∈ Mag(A) \Mag(A).
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We now describe the set Dix(A). Define

Y := {N ∈ Glimm(A) : T (A/N) ̸= ∅}.

It is not difficult to se that Y is a closed subset of Glimm(A).

Theorem (Archbold-G-Robert, 2023)

For an element a ∈ A consider the following conditions:

(i) a ∈ Dix(A).

(ii) a ∈ Dix(A).

(iii) (a) There is a function fa : Y → C such that

(a1) for all N ∈ Y and τ ∈ T (A/N), fa(N) = τ(a+ N),
(a2) for all N ∈ Y , fa(N) ∈ Λa(N).

(b) For all N ∈ Glimm(A) \ Y , Λa(N) ̸= ∅.
Then (i) =⇒ (ii) ⇐⇒ (iii). Further, if (iii) holds then fa is unique and it is
continuous on Y . Finally, if a = a∗, then (i), (ii), and (iii) are equivalent.
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(a1) for all N ∈ Y and τ ∈ T (A/N), fa(N) = τ(a+ N),
(a2) for all N ∈ Y , fa(N) ∈ Λa(N).

(b) For all N ∈ Glimm(A) \ Y , Λa(N) ̸= ∅.
Then (i) =⇒ (ii) ⇐⇒ (iii). Further, if (iii) holds then fa is unique and it is
continuous on Y . Finally, if a = a∗, then (i), (ii), and (iii) are equivalent.
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Example

Let B = K(H) + Cp + C(1− p) be the Dixmier C ∗-algebra and
A := C ([−1, 1],O2)⊗ B (O2 is the Cuntz algebra). Then T (A) = ∅, so
that Dix(A) = Mag(A) and there is a ∈ Dix(A) \Dix(A).

Theorem (Archbold-G-Robert, 2023)

The set Z (A) + [A,A] contains Dix(A) and is equal to the closed linear
span of Dix(A). Further, the following conditions are equivalent:

(i) Dix(A) = Z (A) + [A,A].

(ii) Dix(A) is closed under unitary mixing operators.

(iii) Dix(A) is closed under addition.

(iv) (a) For all N ∈ Y and M ∈ MaxN(A), T (A/M) ̸= ∅.
(b) For all N ∈ Glimm(A) \ Y , MaxN(A) is a singleton set.

Moreover, when these equivalent conditions hold, Dix(A) = Dix(A).
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Problem

Is Mag(A) = Mag(A) and Dix(A) = Dix(A)?

Theorem (Archbold-G-Robert, 2023)

The following conditions are equivalent:

(i) A/Jdp(A) is abelian.

(ii) Dix(A) = Z (A) + Jdp(A),

(iii) Dix(A) is closed under multiplication.

Moreover, under these equivalent conditions Jdp(A) = Jwc(A), so that

Dix(A) = Mag(A) = Z (A) + Jdp(A) = Z (A) + [A,A].

Ilja Gogić (University of Zagreb) Dixmier property and weak centrality SAFA, Ljubljana, 2026 29 / 30



Problem

Is Mag(A) = Mag(A) and Dix(A) = Dix(A)?

Theorem (Archbold-G-Robert, 2023)

The following conditions are equivalent:

(i) A/Jdp(A) is abelian.

(ii) Dix(A) = Z (A) + Jdp(A),

(iii) Dix(A) is closed under multiplication.

Moreover, under these equivalent conditions Jdp(A) = Jwc(A), so that

Dix(A) = Mag(A) = Z (A) + Jdp(A) = Z (A) + [A,A].
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Purely algebraic context – Central Stability
An analogous definition of the CQ-property makes sense for purely
algebraic objects like groups, rings or algebras.

An algebra A over a field F is said to be centrally stable (CS) if for any
ideal J of A we have (Z (A) + J)/I = Z (A/J) (Brešar-G., 2019).

In contrast with the CQ-property for C ∗-algebras, central stability is, as
expected, a more delicate notion. For example:

For a unital noncommutative algebra A, it may occur that the
centrally stable elements of A are precisely the central ones. This
cannot happen for CQ-elements in the C ∗-algebra setting.

Central stability does not, in general, pass to ideals.

Theorem (Brešar-G., 2019)

If A is a finite-dimensional unital algebra over a perfect field F, then A is
CS iff there exist finite field extensions F1, . . . ,Fr of F, commutative
unital Fi -algebras C1, . . . ,Cr , and central simple Fi -algebras A1, . . . ,Ar

such that A ∼= (C1 ⊗F1 A1)× · · · × (Cr ⊗Fr Ar ).
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Theorem (Brešar-G., 2019)

If A is a finite-dimensional unital algebra over a perfect field F, then A is
CS iff there exist finite field extensions F1, . . . ,Fr of F, commutative
unital Fi -algebras C1, . . . ,Cr , and central simple Fi -algebras A1, . . . ,Ar

such that A ∼= (C1 ⊗F1 A1)× · · · × (Cr ⊗Fr Ar ).
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In contrast with the CQ-property for C ∗-algebras, central stability is, as
expected, a more delicate notion. For example:

For a unital noncommutative algebra A, it may occur that the
centrally stable elements of A are precisely the central ones. This
cannot happen for CQ-elements in the C ∗-algebra setting.

Central stability does not, in general, pass to ideals.

Theorem (Brešar-G., 2019)
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In contrast with the CQ-property for C ∗-algebras, central stability is, as
expected, a more delicate notion. For example:

For a unital noncommutative algebra A, it may occur that the
centrally stable elements of A are precisely the central ones. This
cannot happen for CQ-elements in the C ∗-algebra setting.

Central stability does not, in general, pass to ideals.

Theorem (Brešar-G., 2019)
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