

The Dixmier property and weak centrality for C^* -algebras

Ilja Gogić

Department of Mathematics, Faculty of Science
University of Zagreb

Seminar za algebro in funkcionalno analizo
Fakulteta za matematiko in fiziko
Ljubljana, January 8, 2026

*based on a joint work with Robert J. Archbold and Leonel Robert
(IMRN 2022 & 2023)*

C^* -algebras - definition and basic properties

A **C^* -algebra** is a complex Banach $*$ -algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity

$$\|a^*a\| = \|a\|^2, \quad \text{for all } a \in A.$$

C^* -algebras - definition and basic properties

A **C^* -algebra** is a complex Banach $*$ -algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity

$$\|a^*a\| = \|a\|^2, \quad \text{for all } a \in A.$$

The C^* -identity is a very strong requirement. For instance, for any $a \in A$ let $\sigma(a)$ denote the spectrum of a , i.e.

$$\sigma(a) := \{\lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible in } A\}.$$

Then the C^* -identity combined with the spectral radius formula

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \rightarrow \infty} \|a^n\|^{\frac{1}{n}},$$

implies that the C^* -norm is uniquely determined by the algebraic structure:

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \max\{|\lambda| : \lambda \in \sigma(a^*a)\}.$$

In the category of C^* -algebras, the natural candidates for morphisms are the **$*$ -homomorphisms**, i.e. the algebra homomorphisms which preserve the involution. Basic properties:

- they are automatically contractive (isometric if injective), and
- their image is a C^* -subalgebra of the codomain C^* -algebra.

Basic examples

- To any LCH (locally compact Hausdorff) space one can associate a commutative C^* -algebra $C_0(X)$ of all continuous functions $f : X \rightarrow \mathbb{C}$ that vanish at infinity, with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and sup-norm $\|f\|_\infty := \sup_{x \in X} |f(x)|$.
- The set $B(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} becomes a C^* -algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras $M_n(\mathbb{C})$ are C^* -algebras. In fact, the finite direct sums of matrix algebras over \mathbb{C} make up all finite-dimensional C^* -algebras.
- To any LC group G , one can associate a C^* -algebra $C^*(G)$. Everything about the representation theory of G is encoded in $C^*(G)$.
- The category of C^* -algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (C^* -)tensor products, etc.

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^ -algebras (with non-degenerate $*$ -homomorphisms as morphisms).*

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^ -algebras (with non-degenerate $*$ -homomorphisms as morphisms).*

In other words: By passing from the space X to the function algebra $C_0(X)$, no information is lost. In fact, X can be recovered from $C_0(X)$. Thus, topological properties of X can be translated into algebraic properties of $C_0(X)$, and vice versa. Therefore, the theory of C^* -algebras is often thought of as **noncommutative topology**.

Representations of C^* -algebras

A **representation** of a C^* -algebra A is a $*$ -homomorphism $\pi : A \rightarrow \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Representations of C^* -algebras

A **representation** of a C^* -algebra A is a $*$ -homomorphism $\pi : A \rightarrow \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Theorem (General Gelfand-Naimark theorem, 1943)

Any C^ -algebra admits an injective (hence isometric) representation on some Hilbert space.*

Representations of C^* -algebras

A **representation** of a C^* -algebra A is a $*$ -homomorphism $\pi : A \rightarrow \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Theorem (General Gelfand-Naimark theorem, 1943)

Any C^ -algebra admits an injective (hence isometric) representation on some Hilbert space.*

Because of the previous theorem, C^* -algebras can be concretely defined to be norm closed self-adjoint subalgebras of bounded operators on some Hilbert space \mathcal{H} .

The primitive spectrum of a C^* -algebra

Let A be C^* -algebra.

- A **primitive ideal** of A is an ideal which is the kernel of an irreducible representation of A .
- The **primitive spectrum** of A is the set $\text{Prim}(A)$ of primitive ideals of A equipped with the **Jacobson (hull-kernel) topology**: if S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \text{Prim}(A) : \ker S = \bigcap_{Q \in S} Q \subseteq P \right\}.$$

The primitive spectrum of a C^* -algebra

Let A be C^* -algebra.

- A **primitive ideal** of A is an ideal which is the kernel of an irreducible representation of A .
- The **primitive spectrum** of A is the set $\text{Prim}(A)$ of primitive ideals of A equipped with the **Jacobson (hull-kernel) topology**: if S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \text{Prim}(A) : \ker S = \bigcap_{Q \in S} Q \subseteq P \right\}.$$

Example - commutative case

If $A = C_0(X)$ and $x \in X$, let $P_x := \{f \in C_0(X) : f(x) = 0\}$. Then $\text{Prim}(C_0(X)) = \{P_x : x \in X\}$. Moreover, the correspondence $x \mapsto P_x$ defines a homeomorphism between X and $\text{Prim}(C_0(X))$.

Properties of $\text{Prim}(A)$

- $\text{Prim}(A)$ is always a locally compact and is compact if A is unital.
- If A is separable, $\text{Prim}(A)$ is second countable.
- However, as a topological space, $\text{Prim}(A)$ is in general badly behaved and may satisfy only the T_0 -separation axiom.

Properties of $\text{Prim}(A)$

- $\text{Prim}(A)$ is always a locally compact and is compact if A is unital.
- If A is separable, $\text{Prim}(A)$ is second countable.
- However, as a topological space, $\text{Prim}(A)$ is in general badly behaved and may satisfy only the T_0 -separation axiom.

When a C^* -algebra A is unital, the Jacobson topology on $\text{Prim}(A)$ not only describes the ideal structure of A , but also allows us to completely describe its centre $Z(A) = \{z \in A : za = az\}$:

Dauns-Hofmann Theorem, 1968

Let A be a unital C^* -algebra. Then there is a $*$ -isomorphism $\Psi_A : Z(A) \rightarrow C(\text{Prim}(A))$ such that

$$z + P = \Psi_A(z)(P)1 + P$$

for all $f \in C(\text{Prim}(A))$, $a \in A$ and $P \in \text{Prim}(A)$.

The Dixmier property and weak centrality

Preliminaries

- Throughout A will be a C^* -algebra with centre $Z(A)$ and unitary group $\mathcal{U}(A) = \{u \in A : u^*u = uu^* = 1\}$ (if A is unital).
- By an ideal of A we always mean a closed two-sided ideal. We denote by $\text{Ideal}(A)$ the set of all (closed two-sided) ideals of A .
- By $\mathcal{S}(A)$ we denote the set of all states on A (i.e. positive linear functionals $\omega : A \rightarrow \mathbb{C}$ of norm 1) equipped with the relative w^* -topology.
- A state $\tau \in \mathcal{S}(A)$ is said to be **tracial** if $\tau(xy) = \tau(yx) \ \forall x, y \in A$.
- By $\mathcal{T}(A)$ we denote the set of all tracial states on A . If A is unital then $\mathcal{T}(A)$ is a convex w^* -compact subset of $\mathcal{S}(A)$.
- By $\partial_e \mathcal{T}(A)$ we denote the extreme boundary of $\mathcal{T}(A)$, so that $\mathcal{T}(A)$ is equal to the closed convex hull of $\partial_e \mathcal{T}(A)$ (by the Krein-Milman theorem).

- A **unitary mixing operator** on A is a map $\phi: A \rightarrow A$ of the form

$$\phi(x) = \sum_{i=1}^n t_i u_i^* x u_i,$$

where n is a positive integer, $u_1, \dots, u_n \in \mathcal{U}(A)$ and t_1, \dots, t_n non-negative real numbers such that $t_1 + \dots + t_n = 1$. The set of all such maps is denoted by $\text{UM}(A)$.

The Dixmier property and weak centrality

Let A be a unital C^* -algebra.

- For an element $a \in A$ the **Dixmier set** $D_A(a)$ is defined as the norm-closure of the set $\{\phi(a) : \phi \in \text{UM}(A)\}$. Then A is said to have the **Dixmier property** (DP) if

$$D_A(a) \cap Z(A) \neq \emptyset, \quad \forall a \in A.$$

- A is said to be **weakly central** (WC) if for any pair of maximal ideals M_1 and M_2 of A , $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.

Important properties

- $\text{DP} \implies \text{WC}$ (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C^* -algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, $\text{WC} \not\implies \text{DP}$.

Important properties

- $DP \implies WC$ (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C^* -algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, $WC \not\implies DP$.

A complete characterization of C^* -algebras with DP was obtained recently.

Theorem (Archbold-Robert-Tikuisis, 2017)

A unital C^* -algebra A has DP iff all of the following hold:

- A is WC.
- Every simple quotient of A has at most one tracial state.
- Every extreme tracial state of A factors through some simple quotient.

Important properties

- $DP \implies WC$ (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C^* -algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, $WC \not\implies DP$.

A complete characterization of C^* -algebras with DP was obtained recently.

Theorem (Archbold-Robert-Tikuisis, 2017)

A unital C^* -algebra A has DP iff all of the following hold:

- A is WC.
- Every simple quotient of A has at most one tracial state.
- Every extreme tracial state of A factors through some simple quotient.

Corollary

A unital postliminal C^* -algebra has DP iff it is WC.

Corollary

For a unital C^* -algebra A the following conditions are equivalent:

- $Z(A) = \mathbb{C}1$ and A has DP.
- A has a unique maximal ideal M , A (or A/M) has at most one tracial state and M has no tracial states.

Corollary

For a unital C^* -algebra A the following conditions are equivalent:

- $Z(A) = \mathbb{C}1$ and A has DP.
- A has a unique maximal ideal M , A (or A/M) has at most one tracial state and M has no tracial states.

The Dixmier's example

Let \mathcal{H} be a separable infinite-dimensional Hilbert space and let $p \in B(\mathcal{H})$ be any projection with infinite-dimensional kernel and image. Set

$$A := K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H}).$$

Then $Z(A) = \mathbb{C}1$, A has precisely two maximal ideals, namely

$$M_1 := K(\mathcal{H}) + \mathbb{C}p \quad \text{and} \quad M_2 := K(\mathcal{H}) + \mathbb{C}(1-p),$$

and obviously $M_1 \cap Z(A) = M_2 \cap Z(A) = \{0\}$. Hence, A is not WC.

In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging which are defined as follows.

In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging which are defined as follows.

EUCP operators and the Magajna set

- By an **elementary unital completely positive operator** on a unital C^* -algebra A we mean a map $\phi : A \rightarrow A$ of the form

$$\phi(x) = \sum_{i=1}^n a_i^* x a_i,$$

where $n \in \mathbb{N}$, $a_1, \dots, a_n \in A$ such that $\sum_{i=1}^n a_i^* a_i = 1$. The set of all such maps on A is denoted by $\text{EUCP}(A)$.

- For $a \in A$ we define the **Magajna set** $M_A(a)$ as the norm-closure of the set $\{\phi(a) : \phi \in \text{EUCP}(A)\}$ (i.e. the closed C^* -convex hull of a). Obviously $D_A(a) \subseteq M_A(a)$ for any $a \in A$.

In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging which are defined as follows.

EUCP operators and the Magajna set

- By an **elementary unital completely positive operator** on a unital C^* -algebra A we mean a map $\phi : A \rightarrow A$ of the form

$$\phi(x) = \sum_{i=1}^n a_i^* x a_i,$$

where $n \in \mathbb{N}$, $a_1, \dots, a_n \in A$ such that $\sum_{i=1}^n a_i^* a_i = 1$. The set of all such maps on A is denoted by $\text{EUCP}(A)$.

- For $a \in A$ we define the **Magajna set** $M_A(a)$ as the norm-closure of the set $\{\phi(a) : \phi \in \text{EUCP}(A)\}$ (i.e. the closed C^* -convex hull of a). Obviously $D_A(a) \subseteq M_A(a)$ for any $a \in A$.

Theorem (Magajna, 2008)

A unital C^* -algebra A is WC iff $M_A(a) \cap Z(A) \neq \emptyset$ for all $a \in A$.

On the other hand, in 1971 Vesterstrøm gave a different characterization of weak centrality of A in terms of the quotient images of $Z(A)$.

On the other hand, in 1971 Vesterstrøm gave a different characterization of weak centrality of A in terms of the quotient images of $Z(A)$.

The centre-quotient property

- If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A) + J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

On the other hand, in 1971 Vesterstrøm gave a different characterization of weak centrality of A in terms of the quotient images of $Z(A)$.

The centre-quotient property

- If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A) + J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

- A is said to have the **centre-quotient property** (CQP) if the equality holds above for any $J \in \text{Ideal}(A)$.

On the other hand, in 1971 Vesterstrøm gave a different characterization of weak centrality of A in terms of the quotient images of $Z(A)$.

The centre-quotient property

- If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A) + J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

- A is said to have the **centre-quotient property** (CQP) if the equality holds above for any $J \in \text{Ideal}(A)$.

Theorem (Vesterstrøm, Math. Scand. 1971)

A unital C^* -algebra is WC iff it has CQP.

On the other hand, in 1971 Vesterstrøm gave a different characterization of weak centrality of A in terms of the quotient images of $Z(A)$.

The centre-quotient property

- If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A) + J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

- A is said to have the **centre-quotient property** (CQP) if the equality holds above for any $J \in \text{Ideal}(A)$.

Theorem (Vesterstrøm, Math. Scand. 1971)

A unital C^* -algebra is WC iff it has CQP.

Example

If $A = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1 - p) \subset B(\mathcal{H})$ is the Dixmier C^* -algebra, then $Z(A) = \mathbb{C}1$, while $Z(A/K(\mathcal{H})) = A/K(\mathcal{H}) \cong \mathbb{C} \oplus \mathbb{C}$.

We would like to investigate in what extent an arbitrary C^* -algebra fails to satisfy WC/CQP and DP. We proceed in two different ways:

We would like to investigate in what extent an arbitrary C^* -algebra fails to satisfy WC/CQP and DP. We proceed in two different ways:

Global approach

Show that any C^* -algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

We would like to investigate in what extent an arbitrary C^* -algebra fails to satisfy WC/CQP and DP. We proceed in two different ways:

Global approach

Show that any C^* -algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

Local approach

Consider individual elements of A which witness DP and WC/CQP. We define an element $a \in A$ to be:

- a **Dixmier element** if $D_A(a) \cap Z(A) \neq \emptyset$;
- a **Magajna element** if $M_A(a) \cap Z(A) \neq \emptyset$;
- a **CQ-element** if for any ideal J of A , $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

We would like to investigate in what extent an arbitrary C^* -algebra fails to satisfy WC/CQP and DP. We proceed in two different ways:

Global approach

Show that any C^* -algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

Local approach

Consider individual elements of A which witness DP and WC/CQP. We define an element $a \in A$ to be:

- a **Dixmier element** if $D_A(a) \cap Z(A) \neq \emptyset$;
- a **Magajna element** if $M_A(a) \cap Z(A) \neq \emptyset$;
- a **CQ-element** if for any ideal J of A , $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

By $\text{Dix}(A)$, $\text{Mag}(A)$ and $\text{CQ}(A)$ we respectively denote the sets of all Dixmier, Magajna and CQ-elements of A . Obviously A has DP iff $\text{Dix}(A) = A$, while A is WC/has CQP iff $\text{Mag}(A) = \text{CQ}(A) = A$.

Global approach

We begin by extending the definition of WC and DP for non-unital C^* -algebras in the obvious way: We say that a non-unital C^* -algebra A is WC/has DP if its minimal unitization $A^\sharp = A \oplus \mathbb{C}1$ has the same property.

Global approach

We begin by extending the definition of WC and DP for non-unital C^* -algebras in the obvious way: We say that a non-unital C^* -algebra A is WC/has DP if its minimal unitization $A^\sharp = A \oplus \mathbb{C}1$ has the same property.

Modular maximal ideals

- An ideal J of A is said to be **modular** if the algebra A/J is unital.
- Any proper modular ideal of A (if such exists) is contained in some modular maximal ideal of A and all modular maximal ideals of A are primitive. By $\text{Max}(A)$ we denote the set of all modular maximal ideals of A , so that $\text{Max}(A) \subseteq \text{Prim}(A)$.
- $\text{Max}(A)$ can be empty (e.g. the algebra $A = K(\mathcal{H})$ of compact operators on a separable infinite-dimensional Hilbert space \mathcal{H}).
- If A is unital, both spaces $\text{Prim}(A)$ and $\text{Max}(A)$ are compact.
- For any $J \in \text{Ideal}(A)$ we define $\text{Max}^J(A)$ for the set of all modular maximal ideals of A that contain J . The space $\text{Max}^J(A)$ is canonically homeomorphic to $\text{Max}(A/J)$ via the assignment $M \mapsto M/J$.

Theorem (Archbold-G, 2022)

For any C^* -algebra A the following conditions are equivalent:

- A is WC.
- No modular maximal ideal of A contains $Z(A)$ and for all $M_1, M_2 \in \text{Max}(A)$, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C^* -algebras is closed under forming ideals, quotients, direct sums and C^* -tensor product. Moreover if A_1 and A_2 are C^* -algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C^* -norm β iff both A_1 and A_2 are WC.

Theorem (Archbold-G, 2022)

For any C^* -algebra A the following conditions are equivalent:

- A is WC.
- No modular maximal ideal of A contains $Z(A)$ and for all $M_1, M_2 \in \text{Max}(A)$, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C^* -algebras is closed under forming ideals, quotients, direct sums and C^* -tensor product. Moreover if A_1 and A_2 are C^* -algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C^* -norm β iff both A_1 and A_2 are WC.

It is possible to show that every C^* -algebra contains a largest ideal with CQP by using Zorn's lemma and the fact that the sum of two ideals with CQP has CQP.

Theorem (Archbold-G, 2022)

For any C^* -algebra A the following conditions are equivalent:

- A is WC.
- No modular maximal ideal of A contains $Z(A)$ and for all $M_1, M_2 \in \text{Max}(A)$, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C^* -algebras is closed under forming ideals, quotients, direct sums and C^* -tensor product. Moreover if A_1 and A_2 are C^* -algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C^* -norm β iff both A_1 and A_2 are WC.

It is possible to show that every C^* -algebra contains a largest ideal with CQP by using Zorn's lemma and the fact that the sum of two ideals with CQP has CQP.

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A .

Theorem (Archbold-G, 2022)

Let A be a C^* -algebra and T_A the set of all $M \in \text{Max}(A)$ such that either

- $Z(A) \subseteq M$, or
- there is $N \in \text{Max}(A)$ such that $M \neq N$, $Z(A) \not\subseteq M, N$ and $M \cap Z(A) = N \cap Z(A)$.

Then $J_{wc}(A) := \ker T_A$ is the largest weakly central ideal of A .

Theorem (Archbold-G, 2022)

Let A be a C^* -algebra and T_A the set of all $M \in \text{Max}(A)$ such that either

- $Z(A) \subseteq M$, or
- there is $N \in \text{Max}(A)$ such that $M \neq N$, $Z(A) \not\subseteq M, N$ and $M \cap Z(A) = N \cap Z(A)$.

Then $J_{wc}(A) := \ker T_A$ is the largest weakly central ideal of A .

Example

- If $A = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H})$ is the Dixmier's example, then $J_{wc}(A) = (K(\mathcal{H}) + \mathbb{C}p) \cap (K(\mathcal{H}) + \mathbb{C}(1-p)) = K(\mathcal{H})$.
- If G is either the free group on two generators \mathbb{F}_2 or the discrete three-dimensional Heisenberg group

$$H_3 = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\},$$

then for $A = C^*(G)$ we have $J_{wc}(A) = \{0\}$.

By using Zorn's lemma, in 1972 Archbold showed that any unital C^* -algebra A contains the largest ideal $J_{dp}(A)$ with DP. We now describe $J_{dp}(A)$ more explicitly. But first we recall the notion of Glimm ideals.

By using Zorn's lemma, in 1972 Archbold showed that any unital C^* -algebra A contains the largest ideal $J_{dp}(A)$ with DP. We now describe $J_{dp}(A)$ more explicitly. But first we recall the notion of Glimm ideals.

Glimm ideals in unital C^* -algebras

The **Glimm ideals** of a unital C^* -algebra A are the ideals of A generated by the maximal ideals of $Z(A)$. Notation: $\text{Glimm}(A)$.

By using Zorn's lemma, in 1972 Archbold showed that any unital C^* -algebra A contains the largest ideal $J_{dp}(A)$ with DP. We now describe $J_{dp}(A)$ more explicitly. But first we recall the notion of Glimm ideals.

Glimm ideals in unital C^* -algebras

The **Glimm ideals** of a unital C^* -algebra A are the ideals of A generated by the maximal ideals of $Z(A)$. Notation: $\text{Glimm}(A)$.

The correspondence

$$\text{Glimm}(A) \ni N \longmapsto N \cap Z(A) \in \text{Max}(Z(A))$$

is a bijection. Its inverse is given by

$$\text{Max}(Z(A)) \ni J \longmapsto JA \in \text{Glimm}(A),$$

and no closure operation is required, by the Hewitt–Cohen factorization theorem. Via this identification, we equip $\text{Glimm}(A)$ with the compact Hausdorff topology inherited from $\text{Max}(Z(A))$.

- Now consider the set $X \subseteq \text{Glimm}(A)$ of Glimm ideals N such that A/N has DP and a trivial centre.
- This is equivalent to saying that N is contained in a unique maximal ideal M_N of A , that A/N has at most one tracial state and that if A/N does have a tracial state then it factors through A/M_N .
- For $N \in \text{Glimm}(A) \setminus X$ define

$$I_N := \ker \text{Max}^N(A) \cap \ker\{I_\tau : \tau \in \mathcal{T}(A/N)\}$$

where, for $\tau \in \mathcal{T}(A/N)$, I_τ is the corresponding trace-kernel, i. e.

$$I_\tau := \{a \in A : \tau(a^*a + N) = 0\}.$$

- Now consider the set $X \subseteq \text{Glimm}(A)$ of Glimm ideals N such that A/N has DP and a trivial centre.
- This is equivalent to saying that N is contained in a unique maximal ideal M_N of A , that A/N has at most one tracial state and that if A/N does have a tracial state then it factors through A/M_N .
- For $N \in \text{Glimm}(A) \setminus X$ define

$$I_N := \ker \text{Max}^N(A) \cap \ker\{I_\tau : \tau \in \mathcal{T}(A/N)\}$$

where, for $\tau \in \mathcal{T}(A/N)$, I_τ is the corresponding trace-kernel, i. e.

$$I_\tau := \{a \in A : \tau(a^*a + N) = 0\}.$$

Theorem (Archbold-G-Robert, 2023)

We have

$$J_{dp}(A) = \ker\{I_N : N \in \text{Glimm}(A) \setminus X\}.$$

Local approach

Recall, if $a \in A$ then:

- $a \in \text{Dix}(A)$ if $D_A(A) \cap Z(A) \neq \emptyset$
- $a \in \text{Mag}(A)$ if $M_A(A) \cap Z(A) \neq \emptyset$.
- $a \in \text{CQ}(A)$ if for any ideal J of A , $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

Local approach

Recall, if $a \in A$ then:

- $a \in \text{Dix}(A)$ if $D_A(A) \cap Z(A) \neq \emptyset$
- $a \in \text{Mag}(A)$ if $M_A(A) \cap Z(A) \neq \emptyset$.
- $a \in \text{CQ}(A)$ if for any ideal J of A , $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

We always have

$$\text{Dix}(A) \subseteq \text{Mag}(A) \subseteq \text{CQ}(A).$$

- $\text{Dix}(A)$ always contains $Z(A) + J_{dp}(A)$, all self-commutators $[a^*, a]$ and all quasinilpotents. In particular, $\text{Dix}(A) = Z(A)$ iff A is abelian.
- $\text{Mag}(A)$ always contains $Z(A) + J_{wc}(A)$ and all products ab where a or b is quasinilpotent.
- $\text{CQ}(A)$ always contains all commutators $[a, b]$. There are C^* -algebras A such that $[a, b] \notin \text{Mag}(A)$ for some $a, b \in A$.

We always have

$$\overline{\text{span}(\text{Mag}(A))} = \overline{\text{span}(\text{CQ}(A))} = Z(A) + \text{Ideal}([A, A]).$$

On the other hand, when sets $\text{CQ}(A)$ and $\text{Mag}(A)$ coincide, A is not far from being WC. On the other hand, when this fails, both sets dramatically fail to be C^* -subalgebras of A :

Theorem (Archbold-G, 2022 & Archbold-G-Robert, 2023)

The following conditions are equivalent:

- $\text{Mag}(A) = \text{CQ}(A)$.
- $\text{Mag}(A) = \text{CQ}(A) = Z(A) + J_{wc}(A)$.
- $A/J_{wc}(A)$ is abelian.
- $\text{Mag}(A)$ and/or $\text{CQ}(A)$ is closed under addition.
- $\text{Mag}(A)$ and/or $\text{CQ}(A)$ is closed under multiplication.
- $\text{Mag}(A)$ is closed under EUCP operators.
- $\text{CQ}(A)$ is norm-closed.

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while $CQ(A)$ is norm-dense in A .

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while $CQ(A)$ is norm-dense in A .

In order to identify the set $CQ(A)$ we shall need the following result:

Theorem (Archbold-G, 2022)

Let A be a unital C^* -algebra and let J be an ideal of A . A central element \dot{z} of A/J can be lifted to a central element of A iff

$$\Psi_{A/J}(\dot{z})(P_1/J) = \Psi_{A/J}(\dot{z})(P_2/J)$$

for all $P_1, P_2 \in \text{Prim}(A)$ that contain J and $P_1 \cap Z(A) = P_2 \cap Z(A)$.

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while $CQ(A)$ is norm-dense in A .

In order to identify the set $CQ(A)$ we shall need the following result:

Theorem (Archbold-G, 2022)

Let A be a unital C^* -algebra and let J be an ideal of A . A central element \dot{z} of A/J can be lifted to a central element of A iff

$$\Psi_{A/J}(\dot{z})(P_1/J) = \Psi_{A/J}(\dot{z})(P_2/J)$$

for all $P_1, P_2 \in \text{Prim}(A)$ that contain J and $P_1 \cap Z(A) = P_2 \cap Z(A)$.

Theorem (Archbold-G, 2022)

An element $a \in A$ belongs to $A \setminus CQ(A)$ iff one of the following holds:

- there exists $M \in \text{Max}(A)$ such that $Z(A) \subseteq M$ and $a + M$ is a non-zero scalar in A/M ;
- there exist $M_1, M_2 \in \text{Max}(A)$ and scalars $\lambda_1 \neq \lambda_2$ such that $Z(A) \neq M_1 \cap Z(A) = M_2 \cap Z(A)$ and $a + M_i = \lambda_i 1_{A/M_i}$ ($i = 1, 2$).

On the other hand, a complete description of $\text{Dix}(A)$ and $\text{Mag}(A)$ is in general difficult to obtain. This has led us to also consider the sets

$$\overline{\text{Mag}}(A) = \{a \in A : \text{dist}(M_A(a), Z(A)) = 0\},$$

$$\overline{\text{Dix}}(A) = \{a \in A : \text{dist}(D_A(a), Z(A)) = 0\}.$$

These are more tractable sets (e.g. they are norm-closed). We have

$$\begin{array}{ccc} \overline{\text{Dix}}(A) & & \\ \cup\!\!\!/\!\!\! \cup & & \cup\!\!\!/\!\!\! \cup \\ \text{Dix}(A) & & \overline{\text{Mag}}(A) \subseteq \text{CQ}(A). \\ \cup\!\!\!/\!\!\! \cup & & \cup\!\!\!/\!\!\! \cup \\ & & \text{Mag}(A) \end{array}$$

Also note that A has DP iff $\overline{\text{Dix}}(A) = A$ and A is WC iff $\overline{\text{Mag}}(A) = A$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in \mathcal{S}(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in \mathcal{S}(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Theorem (Magajna, 2000)

Let $a \in A$. A normal element $b \in A$ belongs to $M_A(a)$ iff $W_{A/P}(b + P) \subseteq W_{A/P}(a + P)$ for each $P \in \text{Prim}(A)$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in \mathcal{S}(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Theorem (Magajna, 2000)

Let $a \in A$. A normal element $b \in A$ belongs to $M_A(a)$ iff $W_{A/P}(b + P) \subseteq W_{A/P}(a + P)$ for each $P \in \text{Prim}(A)$.

Theorem (Archbold-G-Robert, 2023)

For any $a \in A$ we have $a \in \overline{\text{Mag}}(A)$ iff for all $N \in \text{Glimm}(A)$,

$$\Lambda_a(N) := \bigcap_{M \in \text{Max}^N(A)} W_{A/M}(a + M) \neq \emptyset.$$

Further, if a is self-adjoint, then $a \in \overline{\text{Mag}}(A)$ iff $a \in \text{Mag}(A)$.

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1 - p)$ be the Dixmier C^* -algebra and let $A = C([-1, 1], M_2(\mathbb{C})) \otimes B$. We define elements $a, b \in A$ as:

$$a(t) := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad b(t) := \begin{pmatrix} \alpha(t) & 0 \\ 0 & \beta(t) \end{pmatrix},$$

where $\alpha(t)$ and $\beta(t)$ are curves in the plane such that:

- From $t = -1$ to $t = 0$ the interval $[\alpha(t), \beta(t)]$ starts at $[-1, -1 + 2i]$, remains pinned at -1 while rotating till it is flat and equal to $[-1, 1]$ at $t = 0$.
- Then from $t = 0$ to $t = 1$ the interval $[\alpha(t), \beta(t)]$ is pinned at 1 , and rotates till it stops at $[1, 1 + 2i]$.

If $c \in A$ defined as

$$c := a \otimes p + b \otimes (1 - p),$$

then c is a normal element of A such that $c \in \overline{\text{Mag}}(A) \setminus \text{Mag}(A)$.

We now describe the set $\overline{\text{Dix}}(A)$. Define

$$Y := \{N \in \text{Glimm}(A) : \mathcal{T}(A/N) \neq \emptyset\}.$$

It is not difficult to see that Y is a closed subset of $\text{Glimm}(A)$.

We now describe the set $\overline{\text{Dix}}(A)$. Define

$$Y := \{N \in \text{Glimm}(A) : \mathcal{T}(A/N) \neq \emptyset\}.$$

It is not difficult to see that Y is a closed subset of $\text{Glimm}(A)$.

Theorem (Archbold-G-Robert, 2023)

For an element $a \in A$ consider the following conditions:

- (i) $a \in \text{Dix}(A)$.
- (ii) $a \in \overline{\text{Dix}}(A)$.
- (iii) (a) There is a function $f_a: Y \rightarrow \mathbb{C}$ such that
 - (a1) for all $N \in Y$ and $\tau \in \mathcal{T}(A/N)$, $f_a(N) = \tau(a + N)$,
 - (a2) for all $N \in Y$, $f_a(N) \in \Lambda_a(N)$.
- (b) For all $N \in \text{Glimm}(A) \setminus Y$, $\Lambda_a(N) \neq \emptyset$.

Then (i) \implies (ii) \iff (iii). Further, if (iii) holds then f_a is unique and it is continuous on Y . Finally, if $a = a^*$, then (i), (ii), and (iii) are equivalent.

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1 - p)$ be the Dixmier C^* -algebra and $A := C([-1, 1], \mathcal{O}_2) \otimes B$ (\mathcal{O}_2 is the Cuntz algebra). Then $\mathcal{T}(A) = \emptyset$, so that $\text{Dix}(A) = \text{Mag}(A)$ and there is $a \in \overline{\text{Dix}(A)} \setminus \text{Dix}(A)$.

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1 - p)$ be the Dixmier C^* -algebra and $A := C([-1, 1], \mathcal{O}_2) \otimes B$ (\mathcal{O}_2 is the Cuntz algebra). Then $\mathcal{T}(A) = \emptyset$, so that $\text{Dix}(A) = \text{Mag}(A)$ and there is $a \in \overline{\text{Dix}(A)} \setminus \text{Dix}(A)$.

Theorem (Archbold-G-Robert, 2023)

The set $Z(A) + \overline{[A, A]}$ contains $\overline{\text{Dix}(A)}$ and is equal to the closed linear span of $\text{Dix}(A)$. Further, the following conditions are equivalent:

- (i) $\text{Dix}(A) = Z(A) + \overline{[A, A]}$.
- (ii) $\text{Dix}(A)$ is closed under unitary mixing operators.
- (iii) $\text{Dix}(A)$ is closed under addition.
- (iv) (a) For all $N \in Y$ and $M \in \text{Max}^N(A)$, $\mathcal{T}(A/M) \neq \emptyset$.
(b) For all $N \in \text{Glimm}(A) \setminus Y$, $\text{Max}^N(A)$ is a singleton set.

Moreover, when these equivalent conditions hold, $\text{Dix}(A) = \overline{\text{Dix}(A)}$.

Problem

Is $\overline{\text{Mag}(A)} = \overline{\text{Mag}}(A)$ and $\overline{\text{Dix}(A)} = \overline{\text{Dix}}(A)$?

Problem

Is $\overline{\text{Mag}(A)} = \overline{\text{Mag}}(A)$ and $\overline{\text{Dix}(A)} = \overline{\text{Dix}}(A)$?

Theorem (Archbold-G-Robert, 2023)

The following conditions are equivalent:

- (i) $A/J_{dp}(A)$ is abelian.
- (ii) $\text{Dix}(A) = Z(A) + J_{dp}(A)$,
- (iii) $\text{Dix}(A)$ is closed under multiplication.

Moreover, under these equivalent conditions $J_{dp}(A) = J_{wc}(A)$, so that

$$\text{Dix}(A) = \text{Mag}(A) = Z(A) + J_{dp}(A) = Z(A) + \overline{[A, A]}.$$

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

An algebra A over a field \mathbb{F} is said to be **centrally stable (CS)** if for any ideal J of A we have $(Z(A) + J)/I = Z(A/J)$ (Brešar-G., 2019).

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

An algebra A over a field \mathbb{F} is said to be **centrally stable (CS)** if for any ideal J of A we have $(Z(A) + J)/I = Z(A/J)$ (Brešar-G., 2019).

In contrast with the CQ-property for C^* -algebras, central stability is, as expected, a more delicate notion. For example:

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

An algebra A over a field \mathbb{F} is said to be **centrally stable (CS)** if for any ideal J of A we have $(Z(A) + J)/I = Z(A/J)$ (Brešar-G., 2019).

In contrast with the CQ-property for C^* -algebras, central stability is, as expected, a more delicate notion. For example:

- For a unital noncommutative algebra A , it may occur that the centrally stable elements of A are precisely the central ones. This cannot happen for CQ-elements in the C^* -algebra setting.

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

An algebra A over a field \mathbb{F} is said to be **centrally stable (CS)** if for any ideal J of A we have $(Z(A) + J)/I = Z(A/J)$ (Brešar-G., 2019).

In contrast with the CQ-property for C^* -algebras, central stability is, as expected, a more delicate notion. For example:

- For a unital noncommutative algebra A , it may occur that the centrally stable elements of A are precisely the central ones. This cannot happen for CQ-elements in the C^* -algebra setting.
- Central stability does not, in general, pass to ideals.

Purely algebraic context – Central Stability

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

An algebra A over a field \mathbb{F} is said to be **centrally stable (CS)** if for any ideal J of A we have $(Z(A) + J)/I = Z(A/J)$ (Brešar-G., 2019).

In contrast with the CQ-property for C^* -algebras, central stability is, as expected, a more delicate notion. For example:

- For a unital noncommutative algebra A , it may occur that the centrally stable elements of A are precisely the central ones. This cannot happen for CQ-elements in the C^* -algebra setting.
- Central stability does not, in general, pass to ideals.

Theorem (Brešar-G., 2019)

If A is a finite-dimensional unital algebra over a perfect field \mathbb{F} , then A is CS iff there exist finite field extensions $\mathbb{F}_1, \dots, \mathbb{F}_r$ of \mathbb{F} , commutative unital \mathbb{F}_i -algebras C_1, \dots, C_r , and central simple \mathbb{F}_i -algebras A_1, \dots, A_r such that $A \cong (C_1 \otimes_{\mathbb{F}_1} A_1) \times \dots \times (C_r \otimes_{\mathbb{F}_r} A_r)$.