The cb-norm approximation of derivations and automorphisms by elementary operators

Ilja Gogić

Department of Mathematics
University of Zagreb

IWOTA 2019
July 22-26, 2019
Lisbon, Portugal

This research was partially supported by the Croatian Science Foundation under the project IP-2016-06-1046.
C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C*-algebra A. The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system. A state of the system is defined as a positive functional on A (i.e. a linear map $\omega: A \to \mathbb{C}$ such that $\omega(a^*a) \geq 0$ for all $a \in A$) with $\omega(1_A) = 1$. If the system is in the state ω, then $\omega(a)$ is the expected value of the observable a.

Automorphisms correspond to the symmetries, while one-parameter automorphism groups $\{\Phi_t\}_{t \in \mathbb{R}}$ describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators $\delta(x) := \lim_{t \to 0} \frac{1}{t}(\Phi_t(x) - x)$ are the \ast-derivations.
Introduction

\textbf{C*-algebraic formulation of Quantum Mechanics}

In quantum mechanics a physical system is typically described via a unital \(C^* \)-algebra \(A \).

The self-adjoint elements of \(A \) are thought of as the observables; they are the measurable quantities of the system. A state of the system is defined as a positive functional on \(A \) (i.e. a linear map \(\omega : A \to \mathbb{C} \) such that \(\omega(a^*a) \geq 0 \) for all \(a \in A \)) with \(\omega(1_A) = 1 \). If the system is in the state \(\omega \), then \(\omega(a) \) is the expected value of the observable \(a \).

Automorphisms correspond to the symmetries, while one-parameter automorphism groups \(\{ \Phi_t \}_{t \in \mathbb{R}} \) describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators \(\delta(x) := \lim_{t \to 0} \frac{1}{t} (\Phi_t(x) - x) \) are the \(\ast \)-derivations.
C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C*-algebra A.

- The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system.
C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C*-algebra A.

- The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system.
- A state of the system is defined as a positive functional on A (i.e. a linear map $\omega : A \to \mathbb{C}$ such that $\omega(a^*a) \geq 0$ for all $a \in A$) with $\omega(1_A) = 1$. If the system is in the state ω, then $\omega(a)$ is the expected value of the observable a.
In quantum mechanics a physical system is typically described via a unital C^*-algebra A.

- The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system.

- A state of the system is defined as a positive functional on A (i.e. a linear map $\omega : A \to \mathbb{C}$ such that $\omega(a^*a) \geq 0$ for all $a \in A$) with $\omega(1_A) = 1$. If the system is in the state ω, then $\omega(a)$ is the expected value of the observable a.

- Automorphisms correspond to the symmetries, while one-parameter automorphism groups $\{\Phi_t\}_{t \in \mathbb{R}}$ describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators

$$\delta(x) := \lim_{t \to 0} \frac{1}{t} (\Phi_t(x) - x)$$

are the *-derivations.
Throughout, A will be a C^*-algebra.
Throughout, A will be a C^*-algebra.

Definition

The **multiplier algebra** $M(A)$ of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.
Throughout, A will be a C^*-algebra.

Definition

The multiplier algebra $M(A)$ of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.

Definition

Derivation of A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in A$.
Throughout, A will be a C^*-algebra.

Definition

The multiplier algebra $M(A)$ of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.

Definition

Derivation of A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in A$.

If there exists a multiplier $a \in M(A)$ such that $\delta(x) = ax - xa$ for all $x \in A$, δ is said to be an inner derivation.
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C^*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem
Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:
- von Neumann algebras (Kadison-Sakai 1966);
- simple C^*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem
Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:
- von Neumann algebras (Kadison-Sakai 1966);
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem
Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:
- von Neumann algebras (Kadison-Sakai 1966);
- simple C^*-algebras (Sakai 1968);
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C^*-algebras (Sakai 1968);
- AW^*-algebras (Olesen 1974);
In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^*-algebras admit only inner derivations?

Some C^*-algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C^*-algebras (Sakai 1968);
- AW^*-algebras (Olesen 1974);
An AW^*-algebra is a C^*-algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.
AW^*-algebras

An **AW^*-algebra** is a C^*-algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

- AW^*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W^*-algebras).
\mathcal{AW}^*-algebras

An **\mathcal{AW}^*-algebra** is a C^*-algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

- \mathcal{AW}^*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (\mathcal{W}^*-algebras).
- A commutative C^*-algebra is an \mathcal{AW}^*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
AW^*-algebras

An AW^*-algebra is a C^*-algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

- AW^*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W^*-algebras).
- A commutative C^*-algebra is an AW^*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
- Every von Neumann algebra is an AW^*-algebra (the converse fails; Dixmier’s commutative example from 1951). Just as for von Neumann algebras, AW^*-algebras can be divided into Type I, Type II, and Type III.
\mathcal{AW}^*-algebras

An \mathcal{AW}^*-algebra is a \mathcal{C}^*-algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

- \mathcal{AW}^*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (\mathcal{W}^*-algebras).

- A commutative \mathcal{C}^*-algebra is an \mathcal{AW}^*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).

- Every von Neumann algebra is an \mathcal{AW}^*-algebra (the converse fails; Dixmier’s commutative example from 1951). Just as for von Neumann algebras, \mathcal{AW}^*-algebras can be divided into Type I, Type II, and Type III.

- All type I \mathcal{AW}^*-algebras are monotone complete (Hamana 1981), but it is unknown whether all \mathcal{AW}^*-algebras are monotone complete; this is a long standing open problem dating back to the work of Kaplansky.
Homogeneous C^*-algebras

A C^*-algebra A is said to be (n)\textbf{homogeneous} if all irreducible representations of A have the same finite dimension n.
Homogeneous C^*-algebras

A C^*-algebra A is said to be (n-)homogeneous if all irreducible representations of A have the same finite dimension n.

- The 1-homogeneous C^*-algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.

A C^*-algebra A is said to be (n)-homogeneous if all irreducible representations of A have the same finite dimension n.

- The 1-homogeneous C^*-algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C^*-algebra $C_0(X, \mathbb{M}_n)$ is n-homogeneous.
Homogeneous C^*-algebras

A C^*-algebra A is said to be (n)-homogeneous if all irreducible representations of A have the same finite dimension n.

- The 1-homogeneous C^*-algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C^*-algebra $C_0(X, \mathbb{M}_n)$ is n-homogeneous.
- More generally, if E is an algebraic \mathbb{M}_n-bundle over a locally compact Hausdorff space X, i.e. E is a locally trivial fibre bundle with fibre \mathbb{M}_n and structure group $\text{Aut}(\mathbb{M}_n) \cong PU(n)$ (the projective unitary group), then the set $\Gamma_0(E)$ of all continuous sections of E vanishing at infinity is an n-homogeneous C^*-algebra, with respect to the fiberwise operations and sup-norm.
Homogeneous C^*-algebras

A C^*-algebra A is said to be (n-)homogeneous if all irreducible representations of A have the same finite dimension n.

- The 1-homogeneous C^*-algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C^*-algebra $C_0(X, M_n)$ is n-homogeneous.
- More generally, if E is an algebraic M_n-bundle over a locally compact Hausdorff space X, i.e. E is a locally trivial fibre bundle with fibre M_n and structure group $\text{Aut}(M_n) \cong PU(n)$ (the projective unitary group), then the set $\Gamma_0(E)$ of all continuous sections of E vanishing at infinity is an n-homogeneous C^*-algebra, with respect to the fiberwise operations and sup-norm.
- By a famous theorem due to Fell and Tomiyama-Takesaki from 1961, every n-homogeneous C^*-algebra A can be realized as $A = \Gamma_0(E)$ for some algebraic M_n-bundle E over $\text{Prim}(A)$.
Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^*-algebra, then the following conditions are equivalent:

(i) A admits only inner derivations.

(ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^*-algebra, and A_2 is a direct sum of simple C^*-algebras.
Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^*-algebra, Then the following conditions are equivalent:

(i) A admits only inner derivations.

(ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^*-algebra, and A_2 is a direct sum of simple C^*-algebras.

On the other hand, for inseparable C^*-algebras the problem of innerness of derivations remains widely open, even for the simplest cases such as subhomogeneous C^*-algebras (i.e. C^*-algebras which have finite-dimensional irreducible representations of bounded degree).
The local multiplier algebra

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.
The local multiplier algebra

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\text{Id}_{ess}(A)$ of all essential ideals of A.
The local multiplier algebra

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\text{Id}_{\text{ess}}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C^*-algebra

$$M_{\text{loc}}(A) := \left(C^* - \right) \lim \{ M(I) : I \in \text{Id}_{\text{ess}}(A) \}.$$
The local multiplier algebra

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\text{Id}_{\text{ess}}(A)$ of all essential ideals of A.

Definition

The **local multiplier algebra** of A is the direct limit C^*-algebra

$$M_{\text{loc}}(A) := \lim_{\longrightarrow} \{ M(I) : I \in \text{Id}_{\text{ess}}(A) \}.$$

Example

If A is simple, then obviously $M_{\text{loc}}(A) = M(A)$.
The local multiplier algebra

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\Id_{\text{ess}}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C^*-algebra

$$M_{\text{loc}}(A) := (C^*-) \lim_{\rightarrow} \{M(I) : I \in \Id_{\text{ess}}(A)\}.$$

Example

If A is simple, then obviously $M_{\text{loc}}(A) = M(A)$.

Example

If A is an AW^*-algebra, then $M_{\text{loc}}(A) = A$.

Ilja Gogić (University of Zagreb)
Lisbon, 2019
Example

If $A = C_0(X)$ is a commutative C^*-algebra, then $M_{loc}(A)$ is a commutative AW^*-algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the "C^*-algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a C^*-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ-unital), this extension becomes inner in $M_{loc}(A)$.

In particular, Pedersen's result entails Sakai's theorem that every derivation of a simple unital C^*-algebra is inner.
Example

If $A = C_0(X)$ is a commutative C^*-algebra, then $M_{\text{loc}}(A)$ is a commutative AW^*-algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the "C^*-algebra of essential multipliers").
Example

If \(A = C_0(X) \) is a commutative \(C^* \)-algebra, then \(M_{\text{loc}}(A) \) is a commutative \(AW^* \)-algebra whose maximal ideal space can be identified with the inverse limit \(\lim_{\leftarrow} \beta U \) of Stone-Čech compactifications \(\beta U \) of dense open subsets \(U \) of \(X \).

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the "\(C^* \)-algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a \(C^* \)-algebra \(A \) extends uniquely and under preservation of the norm to a derivation of \(M_{\text{loc}}(A) \). Moreover, if \(A \) is separable (or more generally, if every essential closed ideal of \(A \) is \(\sigma \)-unital), this extension becomes inner in \(M_{\text{loc}}(A) \).
Example

If $A = C_0(X)$ is a commutative C^*-algebra, then $M_{\text{loc}}(A)$ is a commutative AW^*-algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the ”C^*-algebra of essential multipliers”).

Theorem (Pedersen 1978)

Every derivation of a C^-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{\text{loc}}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ-unital), this extension becomes inner in $M_{\text{loc}}(A)$."

In particular, Pedersen’s result entails Sakai’s theorem that every derivation of a simple unital C^*-algebra is inner."
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

It is known that $M_{\text{loc}}(A)$ has only inner derivations for:

- Simple C^*-algebras and AW^*-algebras (Kadison, Sakai, Olesen);
- Quasi-central separable C^*-algebras such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C^*-algebras with finite-dimensional irreducible representations; in this case $M_{\text{loc}}(A)$ coincides with the injective envelope of A (G. 2013).
Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

It is known that $M_{\text{loc}}(A)$ has only inner derivations for:

- Simple C^*-algebras and AW^*-algebras (Kadison, Sakai, Olesen);
- Quasi-central separable C^*-algebras such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C^*-algebras with finite-dimensional irreducible representations; in this case $M_{\text{loc}}(A)$ coincides with the injective envelope of A (G. 2013).
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

It is known that $M_{\text{loc}}(A)$ has only inner derivations for:

- Simple C^*-algebras and AW^*-algebras (Kadison, Sakai, Olesen);
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

It is known that $M_{\text{loc}}(A)$ has only inner derivations for:

- Simple C^*-algebras and AW^*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C^*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^*-algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{loc}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

- Simple C^*-algebras and AW^*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C^*-algebras such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C^*-algebras with finite-dimensional irreducible representations; in this case $M_{loc}(A)$ coincides with the injective envelope of A (G. 2013).
The cb-norm approximation by elementary operators

Let A be a C^*-algebra. An attractive and fairly large class of bounded linear maps $\phi : A \rightarrow A$ that preserve all ideals of A is the class of elementary operators, that is, those that can be expressed as a finite sum

$$\phi = \sum_i M_{a_i, b_i}$$

of two-sided multiplications $M_{a_i, b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.

Ilja Gogić (University of Zagreb)
The cb-norm approximation by elementary operators

Let A be a C^*-algebra. An attractive and fairly large class of bounded linear maps $\phi : A \rightarrow A$ that preserve all ideals of A is the class of elementary operators, that is, those that can be expressed as a finite sum

$$\phi = \sum_i M_{a_i,b_i}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are completely bounded (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each n, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$
The cb-norm approximation by elementary operators

Let A be a C^*-algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of \textbf{elementary operators}, that is, those that can be expressed as a finite sum

$$\phi = \sum_i M_{a_i,b_i}$$

of \textbf{two-sided multiplications} $M_{a_i,b_i} : x \mapsto a_ixb_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are \textbf{completely bounded} (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each n, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Let us denote by $\mathcal{E} \ell(A)$ the set of all elementary operators on A and by $\mathcal{E} \ell(A)_{cb}$ its cb-norm closure.
We have the following general question:

Which completely bounded operators \(\phi : A \rightarrow A \) admit a cb-norm approximation by elementary operators, i.e. when do we have \(\phi \in E_\ell^c(A) \)?

Since all derivations and \(* \)-automorphisms of \(\mathbb{C}^* \)-algebras \(A \) are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If \(A \) is a unital \(\mathbb{C}^* \)-algebra whose every Glimm ideal is prime, then a derivation \(\delta \) of \(A \) lies in \(E_\ell^c(A) \) cb if and only if \(\delta \) is an inner derivation.

The Glimm ideals of \(A \) are the ideals of \(A \) generated by the maximal ideals of \(Z(A) \).
We have the following general question:

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \mathcal{E}\ell(A)_{cb}$?
We have the following general question:

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \mathcal{E}_\ell(A)_{cb}$?

Since all derivations and $*$-automorphisms of C^*-algebras A are completely bounded, the above question in particular applies to those class of maps.
We have the following general question:

Question

Which completely bounded operators \(\phi : A \rightarrow A \) admit a cb-norm approximation by elementary operators, i.e. when do we have \(\phi \in \mathcal{E}\ell(A)_{cb} \)?

Since all derivations and \(*\)-automorphisms of \(C^* \)-algebras \(A \) are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If \(A \) is a unital \(C^* \)-algebra whose every Glimm ideal is prime, then a derivation \(\delta \) of \(A \) lies in \(\mathcal{E}\ell(A)_{cb} \) if and only if \(\delta \) is an inner derivation.
We have the following general question:

Question
Which completely bounded operators \(\phi : A \rightarrow A \) admit a cb-norm approximation by elementary operators, i.e. when do we have \(\phi \in \mathcal{E}\ell(A)_{cb} \)?

Since all derivations and \(*\)-automorphisms of \(C^* \)-algebras \(A \) are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If \(A \) is a unital \(C^ \)-algebra whose every Glimm ideal is prime, then a derivation \(\delta \) of \(A \) lies in \(\mathcal{E}\ell(A)_{cb} \) if and only if \(\delta \) is an inner derivation.*

The **Glimm ideals** of \(A \) are the ideals of \(A \) generated by the maximal ideals of \(Z(A) \).
Example

The class of \mathcal{C}_\ast-algebras whose every Glimm ideal is prime includes:

- prime \mathcal{C}_\ast-algebras;
- \mathcal{C}_\ast-algebras with Hausdorff primitive spectrum;
- quotients of \mathcal{AW}_\ast-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each \mathcal{C}_\ast-algebra \mathcal{A}, every derivation of $M_{\text{loc}}(\mathcal{A})$ lies in $E_{\mathcal{L}}(M_{\text{loc}}(\mathcal{A}))_{\text{cb}}$.

For prime \mathcal{C}_\ast-algebras we also established the following result:

Theorem (G. 2019)

If \mathcal{A} is a prime \mathcal{C}_\ast-algebra then an algebra epimorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ lies in $E_{\mathcal{L}}(\mathcal{A})_{\text{cb}}$ if and only if σ is an inner automorphism of \mathcal{A}.
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
- quotients of AW^*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^*-algebra A, every derivation of $M_{loc}(A)$ lies in $E_{\ell}(M_{loc}(A))_{cb}$.

For prime C^*-algebras we also established the following result:

Theorem (G. 2019)

If A is a prime C^*-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $E_{\ell}(A)_{cb}$ if and only if σ is an inner automorphism of A.

Ilja Gogić (University of Zagreb)

The cb-norm approx. by elem. operators

Lisbon, 2019
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
- quotients of AW^*-algebras;
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
- quotients of AW^*-algebras;
- local multiplier algebras.
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
- quotients of AW^*-algebras;
- local multiplier algebras.

Corollary

The Pedersen’s problem has a positive solution if and only if for each C^*-algebra A, every derivation of $M_{\text{loc}}(A)$ lies in $\mathcal{E}_{\ell}(M_{\text{loc}}(A))_{\text{cb}}$.
Example

The class of C^*-algebras whose every Glimm ideal is prime includes:

- prime C^*-algebras;
- C^*-algebras with Hausdorff primitive spectrum;
- quotients of AW^*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^*-algebra A, every derivation of $M_{\text{loc}}(A)$ lies in $\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}_{cb}$.

For prime C^*-algebras we also established the following result:

Theorem (G. 2019)

If A is a prime C^*-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $\overline{\mathcal{E}\ell(A)}_{cb}$ if and only if σ is an inner automorphism of A.
In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^*-algebras, which admit only inner derivations (by Sproston’s Theorem):

Example
For $n \geq 2$ let $A_n = C(\mathbb{P}U(n), M_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators. On the other hand:

Proposition
Let A be a separable n-homogeneous C^*-algebra whose primitive spectrum X is locally contractable. Then every $Z(M(A))$-linear automorphism of A becomes inner when extended to $M_{loc}(A)$. In particular, all (outer) elementary automorphisms on $A_n = C(\mathbb{P}U(n), M_n)$ become inner in $M_{loc}(A_n)$.
In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^*-algebras, which admit only inner derivations (by Sproston’s Theorem):

Example

For $n \geq 2$ let $A_n = C(\text{PU}(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.
In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^*-algebras, which admit only inner derivations (by Sproston’s Theorem):

Example

For $n \geq 2$ let $A_n = C(\text{PU}(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

On the other hand:

Proposition

Let A be a separable n-homogeneous C^*-algebra whose primitive spectrum X is locally contractable. Then every $Z(M(A))$-linear automorphism of A becomes inner when extended to $M_{\text{loc}}(A)$. In particular, all (outer) elementary automorphisms on $A_n = C(\text{PU}(n), \mathbb{M}_n)$ become inner in $M_{\text{loc}}(A_n)$.
Moreover, if the primitive spectrum of a C^*-algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C^*-subalgebra of $B = C([1, \infty), M_2)$ that consists of all $a \in B$ such that

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N})$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_a - M_b$ for suitable $a, b \in A$.

Problem

Does every automorphism of a C^*-algebra A that is also an elementary operator become inner when extended to $M_{loc}(A)$?
Moreover, if the primitive spectrum of a \(C^* \)-algebra \(A \) is rather pathological, it can happen that \(A \) admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let \(A \) be a \(C^* \)-subalgebra of \(B = C([1, \infty], \mathbb{M}_2) \) that consists of all \(a \in B \) such that \(a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N}) \)

for some convergent sequence \((\lambda_n(a))\) of complex numbers. Then \(A \) admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of \(A \) of the form \(\delta = M_{a,b} - M_{b,a} \) for suitable \(a, b \in A \).
Moreover, if the primitive spectrum of a C^*-algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C^*-subalgebra of $B = C([1, \infty], M_2)$ that consists of all $a \in B$ such that if

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N})$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Problem

Does every automorphism of a C^*-algebra A that is also an elementary operator become inner when extended to $M_{\text{loc}}(A)$?