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This talk is based on my papers:

o |. Gogi¢, Topologically finitely generated Hilbert C(X)-modules
(2011), submitted to J.M.A.A.

o |. Gogi¢, On derivations and elementary operators on C*-algebras
(2011), submitted to Proc. Edinburgh Math. Soc.

o |. Gogi¢, Elementary operators and subhomogeneous C*-algebras,
Proc. Edinburgh Math. Soc. 54 (2011), no. 1, 99-111.
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@ Hilbert C*-modules form a category in between Banach spaces (they
have a little extra geometrical structure) and Hilbert spaces (they are
not as well behaving as these).

o A Hilbert C*-module obeys the same axioms as an ordinary Hilbert
space, except that the inner product takes values in a more general
C*-algebras than C.

@ Hilbert C*-modules were first introduced in the work of |. Kaplansky
in 1953, who developed the theory for unital commutative
C*-algebras. In the 1970s the theory was extended to
non-commutative C*-algebras independently by W. Paschke and M.
Rieffel.

@ Hilbert C*-modules appear naturally in many areas of C*-algebra
theory, such as KK-theory, Morita equivalence of C*-algebras, and
completely positive operators.
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Definition
Let A be a C*-algebra. A (left) Hilbert A-module is a left A-module V,
equipped with an A-valued inner product (-,-) which is A-linear in the first
and conjugate linear in the second variable, such that V' is a Banach space
with the norm

Ivil:= VI[{v, v} a.

Example
Every C*-algebra A becomes a Hilbert A-module with respect to the inner
product

(a, b) := ab™.
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Example (continued)

Similarly, the direct sum A" of n-copies of A becomes a A-Hilbert module
with respect to the pointwise operations and the inner product

(01D - Dap, b1 ® - @ by) ::Zakbz.

More generally, let

o0 o0
Ha = {(ak) € H : Zaka’,i is norm convergent}.
1 k=1

Then the pointwise operations and the inner product

((ax), (bx)) - Z akbj

turn H 4 into a Hilbert A-module.

v
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H 4 is known as a standard Hilbert A-module. J

Definition
Let V be a Hilbert A-module. We say that V is

o algebraically finitely generated if there exists a finite subset of V
whose A-linear span equals V/;

o topologically finitely generated if there exists a finite subset of V
whose A-linear span is dense in V;

@ countably generated if there exists a countable subset of V' whose
A-linear span is dense in V.

When the C*-algebra A is unital and commutative, there exists a
categorical equivalence between Hilbert A-modules and (F) Hilbert
bundles over the spectrum of the algebra. (F) Hilbert bundles provide a
natural generalization of standard vector bundles from topology.
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Definition

By an (F) Hilbert bundle ((F) stands for Fell) we mean a triple

E = (p, E, X) where E and X are topological spaces with a continuous

open surjection p : E — X, together with operations and norms making

each fibre E, := p~1(x) (x € X) into a complex Hilbert space, such that

the following conditions are satisfied:

(A1) The maps Cx E — E, E xx E — E and E — R, given in each fibre

by scalar multiplication, addition, and the norm, respectively, are
continuous. Here E X x E denotes the Whitney sum

{(e,f) e ExE : p(e) = p(f)}.

(A2) If x € X and if (e,) is a net in E such that ||e,|| — 0 and p(ey) — x
in X, then e, — 0y in E (where Oy is the zero-element of Ey).
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As usual, we say that p is the projection, E is the bundle space and X is
the base space of £.

v

If in (A2) one only requires that the norm function is upper
semicontinuous, one gets the notion of an (H) Hilbert bundle ((H)
stands for Hofmann).

If £ is an (F) Hilbert bundle, then using a polarization identity together
with the continuity of the norm and operations, it is an immediate
consequence that the map E xx E — C given by the inner product in
each fibre is continuous.
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For the (F) Hilbert bundles £ = (p, E, X) and &' = (p, E’, X") we say that
®: & — &' is a Hilbert bundle map if ® is a pair & = (¢, f) of maps,
where ¢ : E — E’ and f : X — X’ are continuous maps such that

(i) the following diagram

E % F

dl 4

X 5 x
is commutative,
(ii) for each x € X, ¢ defines a linear map from E, into E;(X).
It is usually said that ® covers f. If in addition ¢ defines an isometric
isomorphism of each fibre E; onto E,’,(X), then we say that ® is a strong

Hilbert bundle map. If X’ = X, we write ® : £ = £’ to say that ® is an
isomorphism of Hilbert bundles, that is, ¢ is a strong Hilbert bundle
map covering the identity map idx : X — X.
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Example

The simplest example of an (F) Hilbert bundle is the product bundle over
X with fibre H,

e(X, H) := (proj;, X x H, H),

where H is a Hilbert space.

Example

Suppose that £ is an n-dimensional (locally trivial) complex vector bundle
over a compact Hausdorff space. Then £ becomes an (F) Hilbert bundle if
one chooses a Riemannian metric on €. Furthermore, if (-, )1 and (-, )2
are two Riemannian metrics on &, then the formal identity map

id: (&, (,)1) = (&, (-, -)2) defines an isomorphism of (F) Hilbert bundles.
If we make a polar decomposition id = UP, where P is positive and U is
unitary, then U provides a strong Hilbert bundle map between these two
bundles. Hence, an (F) Hilbert bundle structure on a vector bundle is
essentially unique.
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If £ = (p, E, X) is an (F) Hilbert bundle and Y C X then we denote by

S|Y = (p‘pfl(Y)ap_l(Y)v Y)

the restriction of £ to Y.

We say that £ = (p, E, X) is
e trivial if £ = ¢(X, H) for some Hilbert space H;

@ locally trivial if there exists a Hilbert space H and an open cover U
of X such that for each U € U we have &|y = €(U, H).

@ If in addition X admits a finite open cover over which & is locally
trivial, we say that &£ is of finite type.
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If all fibres of an (F) Hilbert bundle £ have the same finite dimension n,
then we say that £ is n-homogeneous. J

The next fact is an easy consequence of the continuity of the operations,
and a pointwise application of the Gram-Schmidt orthonormalization
process.

Proposition

If £ is an n-homogeneous (F) Hilbert bundle, then £ is locally trivial. In
particular, if the base space X of £ is compact, then & is of finite type.

Remark

Hence, the category of n-homogeneous (F) Hilbert bundles over compact
Hausdorff spaces is equivalent to the category of n-dimensional (locally
trivial) complex vector bundles.
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If all fibres of an (F) Hilbert bundle £ are finite dimensional with

n := supdim E; < oo,
xeX

then we say that £ is n-subhomogeneous. In this case every restriction
bundle of £ over a set where dim E, is constant is locally trivial, by the

previous Proposition. If in addition every such restriction bundle is of finite
type, then we say that £ is n-subhomogeneous of finite type.
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By a section of an (F) Hilbert bundle £ = (p, E, X) we mean a map
s : X — E such that
p(s(x)) = x (x € X).

By I'(€) we denote the set of all continuous of sections of &.

If X is compact, then I'(€) becomes a Hilbert C(X)-module with respect
to the action

(ps)(x) := @(x)s(x)
and inner product

(s, u)(x) := (s(x), u(x))x;

where (-, -), denotes the inner product on fibre E,.
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At the end of this introductory, let us briefly describe how for a given
Hilbert C(X)-module V (X is a compact Hausdorff space) one constructs
a canonical Hilbert bundle &y .

@ For x € X let I be the maximal ideal of C(X) consisting of all
functions which vanish at x, and put

=LV ={pv : pel,veV}

Then Jy is a closed submodule of V, by the Hewitt-Cohen
factorization theorem.

o Set E, :=V/Jy, let my : V — E, be the quotient map, let

E= |k,

xeX

and let p: E — X be the canonical projection.
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@ Since for each v € V and x € X we have |7« (v)| = v/(v, v)(x), the
function X — Ry, x — ||mx(v)]| is continuous.

@ Hence, by Fell’s theorem, there exists a unique topology on E for
which &y = (p, E, X) becomes an (F) Hilbert bundle. We say that
Ey is the canonical (F) Hilbert bundle associated to V.

Now we can define the generalized Gelfand transform 'y, : V — [(Ey),
which sends v € V to ¥ € T'(Ey), where

V(x) == v(x) :=me(v) (x€X).

Theorem

v is an isometric C(X)-linear isomorphism between Hilbert
C(X)-modules V and T (Ey).
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et Gutely geneeied (lben: @@Qkwedes |
The next theorem is just a Hilbert module version of the celebrated
Serre-Swan theorem.
Theorem
Let V be a Hilbert C(X)-module, where X is a compact Hausdorff space,
and let £ := &\,. Then the following conditions are equivalent:
(i) Visafg,;
(ii) V is a.f.g. and projective;
(iii) there exists a finite clopen partition X = X1 U --- U Xy such that each
restriction bundle £|x, is homogeneous.

v

Proof.

(i) = (ii). Every a.f.g. Hilbert module over a unital (not necessarily
commutative) C*-algebra A is automatically projective. This is a
consequence of the Kasparov stabilization theorem, which says that if W
is a c.g. Hilbert A-module, then E & Ha = Ha, where H 4 is a standard
Hilbert A-module.
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Proof (continued).

(ii) = (iii). We may assume that
V = PC(X)" (neN)

for some (C(X)- Imear self-adjoint) projection
P € B(C(X)") = Ma(C(X)). Then Ex = P(x)¢3 for all x € X. Since
rank(P(x)) = trace(P(x)), the dimension function

dim: X — {0,1,...,n}, x> dimE, = rank(P(x))
is continuous. If 0 < n; < ... < ng < n are its values, put
Xi={xe X : dimE; = n;}.

Then X = X3 U--- U X, is a desired clopen partition of X.
(iii) = (i). This is easy. O
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The main difference between a.f.g and t.f.g. Hilbert C(X)-modules is the
fact that t.f.g. Hilbert C(X)-modules are not generally projective. Hence,
the dimension of the fibres of the canonical (F) Hilbert bundle may vary,
even if X is connected.

Example

let X be the unit interval [0, 1] and let V := Cy((0,1]). Then V becomes
a Hilbert C([0, 1])-module with respect to the standard action and inner
product (f,g) = f*g. Note that V is topologically singly generated (for
instance, the identity function f(x) = x is such generator, by the
Weierstrass approximation theorem). On the other hand, each fibre E, of
&y is one-dimensional, except Eg, which is zero.

However, this phenomenon is in fact the only major difference between the
classes of a.f.g. and t.f.g. Hilbert C(X)-modules, at least when X is
metrizable.
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______ Topologically finitely generated Hilbert € (X)-modulcs KN
Theorem (G. 2011)

Let X be a compact metrizable space and let V' be a Hilbert C(X)-module
with the canonical (F) Hilbert bundle £y . Then the following conditions
are equivalent:

(i) Vistfg,

(if) Ev is subhomogeneous of finite type.

The proof of the theorem relays on the next two facts:
Lemma

Let £ be an (F) Hilbert bundle over a compact metrizable space X. Then
the following conditions are equivalent:

(i) & is subhomogeneous of finite type;

(ii) There exists a finite number of sections si, . ..,sm € [(E) which
satisfy

spanc{si(x),...,sm(x)} = Ex

for all x € X.
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Proposition

Let € be an (F) Banach bundle over a compact space X. A
C(X)-submodule W C T(E) is dense in T(E) if and only if for each x € X,

{s(x) : se W}

is dense in E,.

Proof of theorem.

Let £ := Ey. We identify V with ['(£) using the generalized Gelfand
transform.

(i) = (ii). Let s1,...,sm € (&) be sections whose C(X)-linear span is
dense in I'(£). Obviously,

W, = spanc{si(x),...,sm(x)}

is dense in E, for each x € X. Since obviously dim W, < co, we conclude
that W, = E for each x € X. Now we apply our lemma.
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Proof of theorem (continued).

(i) = (i). By lemma, there exist s1,...,s, € [(£) which satisfy

spanc{si(x),...,sm(x)} = Ex

for all x € X. The claim now follows from proposition. 0J
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Now we shall present another characterizations of t.f.g. Hilbert
C(X)-modules.

First recall that if X is a locally compact Hausdroff space and if V and W
are (left) Banach Co(X)-modules, then the Co(X)-projective tensor

product V éco(x) W of V and W is by definition the quotient of the

(completed) projective tensor product V é W by the closure of the liner
span of tensors of the form

VYR W —Vv_R pw,

where v e V, we W and p € Gy(X). Fort € V ® W, by tx we denote
the canonical image of t in V éco(x) Ww.
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Definition
Let V be a non-degenerate Banach Cy(X)-module, where X is a locally
compact Hausdorff space.

(i) If W is another Banach Co(X)-module, then for t € V ® W we
define a Co(X)-projective rank of t, denoted by rank’y(t), as the
smallest nonnegative integer k for which there exists a rank k tensor
ue V® W such that tx = ux in V (%)CO(X) W. If such k does not
exist, we define rank’ (t) := oo.

(ii) If there exists K € N such that for every Banach Co(X)-module W,
and every tensor t € V ® W we have rank’y(t) < K, then we say
that V is of finite Co(X)-projective rank. The smallest number K
with this property is denoted by rank’ (V). If such K does not exist,
we define rank’ (V) := oco.
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______ Topologically finitely generated Hilbert € (X)-modulcs KN
Here is a sufficient condition for V' to be of finite Co(X)-projective rank.
Proposition

Let V be a non-degenerate Banach Co(X)-module, where X is a locally
compact Hausdorff space. Let us say that V satisfies the condition (P) if
there exists K € N such that for every sequence (a;) € (*(V) there exist

k < K, elements vi, ..., v, € V and sequences

((p,'71),', ceey ((p,',k),' € El(CO(X)) such that

k
3= iV
j=1

for all i € N. If V satisfies (P), then rank (V) < K.

Remark

Note that the condition (P) in particulary implies that V is weakly
algebraically finitely generated, in a sense that every a.f.g. submodule
of V can be generated by k < K generators.
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Now we are ready to state the final result.

Theorem (G. 2011)

Let V' be Hilbert C(X)-module, where X is a compact metrizable space.
The following conditions are equivalent:

(i) Vistfg,

(ii) V satisfies the condition (P);
(iii) V is of finite C(X)-projective rank;
(iv) V is weakly a.f.g.

Remark

Our proof of the above theorem essentially relies on sectional
representation V =T (Ey).
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@ We can also try to generalize obtained results for a larger class of
Banach C(X)-modules.

@ One can similarly define a notion of an (F) and (H) Banach bundle.

e If M a Banach C(X)-module, one can also similarly construct the
canonical Banach bundle &y. However, &y is only an (H) bundle in
general, and the generalized Gelfand transform 'y : M — [(Ey) fails
to be isometric.

v

If M is a Banach C(X)-module one can of course look for conditions
which might guarantee that [y, is isometric. This was solved by K.
Hofmann in 1974.
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Definition
Let M be a banach C(X)-module. We say that M is C(X)-locally convex
if for any pair @1, 2 € C(X)+ with 1 + @2 =1 and s1,5 € M, we have

lp151 + pasal| < max{]|sy ][, [|s2[}-

Theorem

If M is a Banach C(X)-module, then Ty is an isometric isomorphism from
M onto I'(Ep) if and only if M is C(X)-locally convex.

Example

Suppose that A is a unital Banach algebra with the center Z. If C is a
C*-subalgebra of Z, then A can be viewed as a Banach C-module, under
the natural action. If in addition A is a C*-algebra, then using the
Dauns-Hofmann it is easy to see that A is C-locally convex. In particular,
A =T(EA), where &4 is the canonical bundle of A over Max(Z).
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We have a similar characterization of a.f.g. C*-algebras over Z:

Theorem (G. 2011)
Let A be a unital C*-algebra and let X be the spectrum of Z.
@ A as a Banach Z-module if a.f.g.;

® A is necessarily unital, Ea is an (F) bundle, and there exists a finite
clopen partition X = Xy U --- LU X such that every fibre of each
restriction bundle £|x; is *-isomorphic to some fix matrix algebra
M,.(C).

In particular, every a.f.g. C*-algebra over Z is projective over Z.

Remark

One can briefly say that A is a.f.g. over Z if and only if A is a finite direct
sum of unital homogeneous C*-algebras.

v
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As we saw, the canonical bundle £4 of an a.f.g. C*-algebra over Z is
automatically an (F) bundle. However, this is not true in general for t.f.g.
C*-algebras over Z.

Example

Let B := C([0,1], M2(C)) = M2(C([0,1])) and let A be a C*-subalgebra
of B consisting of all functions f € B such that

=0 3y | me 0= 5]

for some complex numbers A(a) and p(a). One easily checks that matrices

[#67 S118 6] [anton 8] [8 snten |

Lo 2]t [0 coton
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Example (continued)

generate a dense Z-submodule of A. On the other hand, note that the
spectrum of Z can be identified with T. Hence, the canonical bundle of A
over T is not and (F) bundle, since the quotient map [0,1] — T is not
open.
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Hoewever, under the assumption that €4 is an (F) bundle we have the
following result for t.f.g. C*-algebras over Z, at least for separable ones:

Theorem (G. 2011)

Assume that A is a unital separable C*-algebra. If £ is an (F) bundle,
then the following conditions are equivalent:
(i) Aistfg. overZ,

(ii) Fibres E, of Ea have uniformly finite dimensions, and each restriction
bundle of E4 over a set where dim E, is constant is of finite type (as a
vector bundle).

(iii) V satisfies the condition (P) over Z;
(iv) A is of finite Z-projective rank;

(v) A is weakly a.f.g over Z.
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Question

@ Are the conditions (i), (iii), (iv) and (v) also equivalent without the
assumption that €4 is an (F) bundle?

@ More generally, are these conditions also equivalent for all
C(X)-locally convex Banach modules?

Remark

Unlike a.f.g. Hilbert C(X)-modules, a.f.g. C(X)-locally convex Banach
modules are not generally projective. For example, a C*-algebra
A:= C([0,1]) is a.f.g. as a module over C(T), with respect to the action

(of)(x) == p(e¥™)F (x).

On the other hance, A is clearly not projective over C(T).
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However, if we assume the continuity of £y from the start, we can state
the following question:

Question

Suppose that M is an a.f.g. C(X)-locally convex Banach module such
that &y is an (F) bundle. Is M necessarily projective? In particular, is a
dimension function x — dim E, necessarily continuous?
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