On derivations and elementary operators on C^*-algebras

Ilja Gogić

Trinity College Dublin

Infinite Dimensional Function Theory: Present Progress and Future Problems

University College Dublin
January 8-9, 2015

(joint work in progress with Richard Timoney)
Definition

A C^*-algebra is a (complex) Banach $*$-algebra A whose norm $\| \cdot \|$ satisfies the C^*-identity. More precisely:

- A is a Banach algebra over the field \mathbb{C}.
- A is equipped with an involution, i.e. a map $\ast : A \to A$, $a \mapsto a^\ast$ satisfying the properties:
 - $(\alpha a + \beta b)^\ast = \alpha a^\ast + \beta b^\ast$,
 - $(ab)^\ast = b^\ast a^\ast$,
 - $(a^\ast)^\ast = a$,
 for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.
- Norm $\| \cdot \|$ satisfies the C^*-identity, i.e. $\| a^\ast a \| = \| a \|^2$ for all $a \in A$.

Throughout this talk, we assume that all C^*-algebras have identity elements.
Definition

A **C^*-algebra** is a (complex) Banach $*$-algebra A whose norm $\| \cdot \|$ satisfies the C^*-identity. More precisely:

- A is a Banach algebra over the field \mathbb{C}.
Definition

A **C^*-algebra** is a (complex) Banach $*$-algebra A whose norm $\| \cdot \|$ satisfies the C^*-identity. More precisely:

- A is a Banach algebra over the field \mathbb{C}.
- A is equipped with an involution, i.e. a map $\ast : A \to A$, $a \mapsto a^*$ satisfying the properties:

 $$(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*, \quad (ab)^* = b^* a^*, \quad \text{and} \quad (a^*)^* = a,$$

 for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

Throughout this talk, we assume that all C^*-algebras have identity elements.
Definition

A **C*-algebra** is a (complex) Banach *-algebra A whose norm $\| \cdot \|$ satisfies the C*-identity. More precisely:

- A is a Banach algebra over the field \mathbb{C}.
- A is equipped with an involution, i.e. a map $*: A \rightarrow A$, $a \mapsto a^*$ satisfying the properties:

 $$(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*, \quad (ab)^* = b^* a^*, \quad \text{and} \quad (a^*)^* = a,$$

 for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.
- Norm $\| \cdot \|$ satisfies the **C*-identity**, i.e.

 $$\|a^* a\| = \|a\|^2$$

 for all $a \in A$.
Definition

A \textbf{C*-algebra} is a (complex) Banach \(*\)-algebra \(A\) whose norm \(|\cdot|\) satisfies the \(C^*\)-identity. More precisely:

- \(A\) is a Banach algebra over the field \(\mathbb{C}\).
- \(A\) is equipped with an involution, i.e. a map \(*: A \to A, \ a \mapsto a^*\) satisfying the properties:
 \[
 (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*, \quad (ab)^* = b^*a^*, \quad \text{and} \quad (a^*)^* = a,
 \]
 for all \(a, b \in A\) and \(\alpha, \beta \in \mathbb{C}\).
- Norm \(|\cdot|\) satisfies the \(C^*\)-identity, i.e.
 \[
 |a^*a| = |a|^2
 \]
 for all \(a \in A\).

Throughout this talk, we assume that all \(C^*\)-algebras have identity elements.
Fundamental examples

- Let \(X \) be a compact Hausdorff space and let \(C(X) \) be the set of all continuous complex-valued functions on \(X \). Then \(C(X) \) becomes a \(C^* \)-algebra with respect to the pointwise operations, involution \(f^*(x) := \overline{f(x)} \), and max-norm \(\|f\|_\infty := \sup\{|f(x)| : x \in X\} \). Obviously, \(C(X) \) is commutative \(C^* \)-algebra. Moreover, every commutative \(C^* \)-algebra arises in this fashion (Gelfand-Naimark theorem).

- The set \(B(H) \) of bounded linear operators on a Hilbert space \(H \) becomes a \(C^* \)-algebra with respect to the standard operations, usual adjoint and operator norm. In fact, every \(C^* \)-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of \(B(H) \) for some Hilbert space \(H \) (Gelfand-Naimark theorem).

- The category of \(C^* \)-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (some) tensor products, etc.
Fundamental examples

- Let X be a compact Hausdorff space and let $C(X)$ be the set of all continuous complex-valued functions on X. Then $C(X)$ becomes a C^*-algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_\infty := \sup\{|f(x)| : x \in X\}$. Obviously, $C(X)$ is commutative C^*-algebra. Moreover, every commutative C^*-algebra arises in this fashion (Gelfand-Naimark theorem).

- The set $\mathcal{B}(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} becomes a C^*-algebra with respect to the standard operations, usual adjoint and operator norm. In fact, every C^*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (Gelfand-Naimark theorem).
Fundamental examples

- Let X be a compact Hausdorff space and let $C(X)$ be the set of all continuous complex-valued functions on X. Then $C(X)$ becomes a C^*-algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_\infty := \sup\{|f(x)| : x \in X\}$. Obviously, $C(X)$ is commutative C^*-algebra. Moreover, every commutative C^*-algebra arises in this fashion (Gelfand-Naimark theorem).

- The set $\mathcal{B}(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} becomes a C^*-algebra with respect to the standard operations, usual adjoint and operator norm. In fact, every C^*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (Gelfand-Naimark theorem).

The category of C^*-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (some) tensor products, etc.
Definition

A **derivation** on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$
Definition

A **derivation** on a C^*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Basic properties of derivations on C^*-algebras

Every derivation δ on a C^*-algebra A satisfies the following properties:
Definition

A derivation on a C^*-algebra A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Basic properties of derivations on C^*-algebras

Every derivation δ on a C^*-algebra A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
Definition

A **derivation** on a C^*-algebra A is a linear map $\delta : A \to A$ satisfying the **Leibniz rule**

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Basic properties of derivations on C^*-algebras

Every derivation δ on a C^*-algebra A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
Definition

A derivation on a C^*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Basic properties of derivations on C^*-algebras

Every derivation δ on a C^*-algebra A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
- δ vanishes on the centre of A (i.e. $\delta(z) = 0$ for all $z \in Z(A)$). In particular, commutative C^*-algebras don’t admit non-zero derivations.
Definition

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$
Definition

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By $\text{Der}(A)$ and $\text{Inn}(A)$ we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- homogeneous C^*-algebras (Sproston, 1976).
Definition

Each element $a \in A$ induces an inner derivation δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).
- homogeneous C^*-algebras (Sproston, 1976).
Definition
Each element $a \in A$ induces an \textbf{inner derivation} δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By $\text{Der}(A)$ and $\text{Inn}(A)$ we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem
Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- homogeneous C^*-algebras (Sproston, 1976).
Definition

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

Definition

Each element \(a \in A \) induces an inner derivation \(\delta_a \) on \(A \) given by

\[
\delta_a(x) := ax - xa \quad (x \in A).
\]

By \(\text{Der}(A) \) and \(\text{Inn}(A) \) we denote, respectively, the set of all derivations on \(A \) and the set of all inner derivations on \(A \).

Main problem

Which \(C^* \)-algebras admit only inner derivations?

Some classes of \(C^* \)-algebras which admit only inner derivations:

- simple \(C^* \)-algebras (Sakai, 1968).
Definition

Each element $a \in A$ induces an inner derivation δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
Definition
Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa \quad (x \in A).$$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem
Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:
- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- homogeneous C^*-algebras (Sproston, 1976).
In fact, for separable C^*-algebras the above problem was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^-algebra A the following conditions are equivalent:*
In fact, for separable C^*-algebras the above problem was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^-algebra A the following conditions are equivalent:*

- A admits only inner derivations.

- A is a direct sum of a finite number of C^*-subalgebras which are either homogeneous or simple.

- $\text{Der}(A)$ is separable in the operator norm.

On the other hand, for inseparable C^*-algebras the main problem remains widely open, even for the simplest cases such as subhomogeneous C^*-algebras (i.e. C^*-algebras which have finite-dimensional irreducible representations of bounded degree).
In fact, for separable C^*-algebras the above problem was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^*-algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C^*-subalgebras which are either homogeneous or simple.
In fact, for separable C^*-algebras the above problem was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^*-algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C^*-subalgebras which are either homogeneous or simple.
- $\text{Der}(A)$ is separable in the operator norm.
In fact, for separable C^*-algebras the above problem was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^*-algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C^*-subalgebras which are either homogeneous or simple.
- $\text{Der}(A)$ is separable in the operator norm.

On the other hand, for inseparable C^*-algebras the main problem remains widely open, even for the simplest cases such as subhomogeneous C^*-algebras (i.e. C^*-algebras which have finite-dimensional irreducible representations of bounded degree).
Motivation

We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps. On C^*-algebras A, however, it is natural to regard two-sided multiplication maps $M_{a,b}: x \mapsto axb$ ($a, b \in A$) as basic building blocks (instead of rank one operators). We can therefore try to approximate a more general map on A, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by elementary operators.

By $\mathcal{E}_\ell(A)$ we denote the set of all elementary operators on A. It is easy to see that every elementary operator on A is completely bounded, with

$$
\|\sum_i M_{a_i,b_i}\|_{h} \leq \|\sum_i a_i \otimes b_i\|_{h},
$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $A \otimes A$.
Motivation

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

\[C^* \text{-algebras } A \text{, however, it is natural to regard two-sided multiplication maps } M_{a,b} : x \mapsto axb \, \text{ (} a, b \in A \text{)} \text{ as basic building blocks (instead of rank one operators).} \]

We can therefore try to approximate a more general map on \(A \), one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by elementary operators \(E_\ell (A) \).

By \(E_\ell (A) \) we denote the set of all elementary operators on \(A \). It is easy to see that every elementary operator on \(A \) is completely bounded, with

\[\left\| \sum_i M_{a_i,b_i} \right\|_{\text{cb}} \leq \left\| \sum_i a_i \otimes b_i \right\|_h, \]

where \(\| \cdot \|_h \) is the Haagerup tensor norm on \(A \otimes A \).
We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

On C^*-algebras A, however, it is natural to regard two-sided multiplication maps $M_{a,b} : x \mapsto axb$ ($a, b \in A$) as basic building blocks (instead of rank one operators).
Motivation

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

- On C^*-algebras A, however, it is natural to regard two-sided multiplication maps $M_{a,b} : x \mapsto axb$ ($a, b \in A$) as basic building blocks (instead of rank one operators).

- We can therefore try to approximate a more general map on A, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by elementary operators.
Motivation

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On \(C^* \)-algebras \(A \), however, it is natural to regard two-sided multiplication maps \(M_{a,b} : x \mapsto axb \ (a, b \in A) \) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on \(A \), one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by elementary operators.

By \(E\ell(A) \) we denote the set of all elementary operators on \(A \). It is easy to see that every elementary operator on \(A \) is completely bounded, with

\[
\left\| \sum_i M_{a_i,b_i} \right\|_{cb} \leq \left\| \sum_i a_i \otimes b_i \right\|_h,
\]

where \(\| \cdot \|_h \) is the Haagerup tensor norm on \(A \otimes A \).
Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^*-algebras:

Problem Which derivations of a C^*-algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $E_{cb}(A)$?

Remark Since each inner derivation is an elementary operator (of length 2) on A, $E_{cb}(A)$ includes the cb-closure of $\text{Inn}(A)$.

Since the cb-norm of an inner derivation of a C^*-algebra coincides with its operator norm (easy to verify), the cb-norm closure of $\text{Inn}(A)$ coincides with the operator norm closure of $\text{Inn}(A)$. We denote this closure by $\text{Inn}(A)$.
Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^*-algebras:

Problem

Which derivations of a C^*-algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\mathcal{E}\ell(A)^{cb}$ of $\mathcal{E}\ell(A)$?

Remark

Since each inner derivation is an elementary operator (of length 2) on A, $\mathcal{E}\ell(A)^{cb}$ includes the cb-closure of $\text{Inn}(A)$. Since the cb-norm of an inner derivation of a C^*-algebra coincides with its operator norm (easy to verify), the cb-norm closure of $\text{Inn}(A)$ coincides with the operator norm closure of $\text{Inn}(A)$. We denote this closure by $\text{Inn}(A)$.
Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^*-algebras:

Problem

Which derivations of a C^*-algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $E\ell(A)_{\text{cb}}$ of $E\ell(A)$?

Remark

- Since each inner derivation is an elementary operator (of length 2) on A, $E\ell(A)_{\text{cb}}$ includes the cb-corm closure of $\text{Inn}(A)$.

Ilja Gogić (TCD) Derivations and elem. operators UCD, January 9, 2015 8 / 14
Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^*-algebras:

Problem

Which derivations of a C^*-algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\mathcal{E}\ell(A)^{cb}$ of $\mathcal{E}\ell(A)$?

Remark

- Since each inner derivation is an elementary operator (of length 2) on A, $\mathcal{E}\ell(A)^{cb}$ includes the cb-corm closure of $\text{Inn}(A)$.
- Since the cb-norm of an inner derivation of a C^*-algebra coincides with its operator norm (easy to verify), the cb-norm closure of $\text{Inn}(A)$ coincides with the operator norm closure of $\text{Inn}(A)$. We denote this closure by $\overline{\text{Inn}(A)}$.
Problem (G., 2013)

Does every C^*-algebra satisfy the condition

$$\text{Der}(A) \cap \overline{\mathcal{E}(A)}^{cb} = \overline{\text{Inn}(A)}?$$

In many cases the set $\overline{\text{Inn}(A)}$ is closed in the operator norm. However, this is not always true. In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)
The set $\overline{\text{Inn}(A)}$ is closed in the operator norm, as a subset of $\overline{\text{Der}(A)}$, if and only if A has a finite connecting order.
Does every C^*-algebra satisfy the condition

$$\text{Der}(A) \cap \overline{\mathcal{E}\ell(A)}^{cb} = \overline{\text{Inn}(A)}?$$

In many cases the set $\text{Inn}(A)$ is closed in the operator norm. However, this is not always true.
Problem (G., 2013)

Does every C^*-algebra satisfy the condition

$$\text{Der}(A) \cap \overline{E\ell(A)}^{cb} = \overline{\text{Inn}(A)}$$

In many cases the set $\text{Inn}(A)$ is closed in the operator norm. However, this is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set $\text{Inn}(A)$ is closed in the operator norm, as a subset of $\text{Der}(A)$, if and only if A has a finite connecting order.
Connecting order of a C^*-algebra

The connecting order of a C^*-algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum $\text{Prim}(A)$:

Two primitive ideals P, Q of A are said to be adjacent, if P and Q cannot be separated by disjoint open subsets of $\text{Prim}(A)$.

A path of length n from P to Q is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \leq i \leq n$.

The distance $d(P, Q)$ from P to Q is defined as follows:

$\Delta d(P, P) := 1$.

If $P \neq Q$ and there exists a path from P to Q, then $d(P, Q)$ is equal to the minimal length of a path from P to Q.

If there is no path from P to Q, $d(P, Q) := \infty$.

The connecting order $Orc(A)$ of A is then defined by $Orc(A) := \sup \{d(P, Q) : P, Q \in \text{Prim}(A) \text{ such that } d(P, Q) < \infty\}$.
Connecting order of a C^*-algebra

The connecting order of a C^*-algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum $\text{Prim}(A)$:

- Two primitive ideals P, Q of A are said to be **adjacent**, if P and Q cannot be separated by disjoint open subsets of $\text{Prim}(A)$.

The **connecting order** $O_{\text{rc}}(A)$ of A is then defined by

$$O_{\text{rc}}(A) := \sup \{d(P, Q) : P, Q \in \text{Prim}(A) \text{ such that } d(P, Q) < \infty\}.$$

Connecting order of a C*-algebra

The connecting order of a C*-algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum $\text{Prim}(A)$:

- Two primitive ideals P, Q of A are said to be **adjacent**, if P and Q cannot be separated by disjoint open subsets of $\text{Prim}(A)$.

- A **path** of length n from P to Q is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \leq i \leq n$.

The **connecting order** $\text{Orc}(A)$ of A is then defined by $\text{Orc}(A) := \sup \{d(P, Q) : P, Q \in \text{Prim}(A) \text{ such that } d(P, Q) < \infty\}$.
Connecting order of a C^*-algebra

The connecting order of a C^*-algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum $\text{Prim}(A)$:

- Two primitive ideals P, Q of A are said to be adjacent, if P and Q cannot be separated by disjoint open subsets of $\text{Prim}(A)$.

- A path of length n from P to Q is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \leq i \leq n$.

- The distance $d(P, Q)$ from P to Q is defined as follows:

 - $d(P, P) := 1$.
 - If $P \neq Q$ and there exists a path from P to Q, then $d(P, Q)$ is equal to the minimal length of a path from P to Q.
 - If there is no path from P to Q, $d(P, Q) := \infty$.

The connecting order of a C^*-algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum $\operatorname{Prim}(A)$:

- Two primitive ideals P, Q of A are said to be **adjacent**, if P and Q cannot be separated by disjoint open subsets of $\operatorname{Prim}(A)$.

- A **path** of length n from P to Q is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \leq i \leq n$.

- The **distance** $d(P, Q)$ from P to Q is defined as follows:
 - $d(P, P) := 1$.
 - If $P \neq Q$ and there exists a path from P to Q, then $d(P, Q)$ is equal to the minimal length of a path from P to Q.
 - If there is no path from P to Q, $d(P, Q) := \infty$.

- The **connecting order** $\operatorname{Orc}(A)$ of A is then defined by
 $$\operatorname{Orc}(A) := \sup\{d(P, Q) : P, Q \in \operatorname{Prim}(A) \text{ such that } d(P, Q) < \infty\}.$$
Theorem (G., 2013)

The equality \(\text{Der}(A) \cap \mathcal{E}_\ell(A)^{cb} = \text{Inn}(A) \) holds true for all \(C^* \)-algebras \(A \) in which every Glimm ideal is prime.

Recall that the Glimm ideals of a \(C^* \)-algebra \(A \) are the ideals generated by the maximal ideals of the centre of \(A \).

If a \(C^* \)-algebra \(A \) has only prime Glimm ideals, then \(\text{Orc}(A) = 1 \), so Somerset's theorem yields that \(\text{Inn}(A) \) is closed in the operator norm. Hence:

Corollary

If every Glimm ideal of a \(C^* \)-algebra \(A \) is prime, then every derivation of \(A \) which lies in \(\mathcal{E}_\ell(A)^{cb} \) is inner.
Theorem (G., 2013)

The equality \(\text{Der}(A) \cap \mathcal{E}(\ell(A))^{cb} = \text{Inn}(A) \) holds true for all \(C^* \)-algebras \(A \) in which every Glimm ideal is prime.

Recall that the **Glimm ideals** of a \(C^* \)-algebra \(A \) are the ideals generated by the maximal ideals of the centre of \(A \).
Theorem (G., 2013)

The equality \(\text{Der}(A) \cap \mathcal{E}\ell(A)^{cb} = \text{Inn}(A) \) holds true for all \(C^* \)-algebras \(A \) in which every Glimm ideal is prime.

Recall that the **Glimm ideals** of a \(C^* \)-algebra \(A \) are the ideals generated by the maximal ideals of the centre of \(A \).

If a \(C^* \)-algebra \(A \) has only prime Glimm ideals, then \(\text{Orc}(A) = 1 \), so Somerset’s theorem yields that \(\text{Inn}(A) \) is closed in the operator norm. Hence:

Corollary

If every Glimm ideal of a \(C^* \)-algebra \(A \) is prime, then every derivation of \(A \) which lies in \(\mathcal{E}\ell(A)^{cb} \) is inner.
The class of \(C^* \)-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime \(C^* \)-algebras.
- \(C^* \)-algebras with Hausdorff primitive spectrum.
- Quotients of \(AW^* \)-algebras.
- Local multiplier algebras.

By an elementary derivation on a \(C^* \)-algebra \(A \) we mean every derivation on \(A \) which is also an elementary operator on \(A \).

Question: Does there exist a \(C^* \)-algebra \(A \) which admits an outer elementary derivation?

Motivated by our previous discussion, it is natural to start looking for possible examples in the class of \(C^* \)-algebras with \(\text{Orc}(A) = \infty \).
Example

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
- Quotients of AW^*-algebras.
Example

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
- Quotients of AW^*-algebras.
- Local multiplier algebras.
Example

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
- Quotients of AW^*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^*-algebra A we mean every derivation on A which is also an elementary operator on A.
Example

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
- Quotients of AW^*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^*-algebra A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^*-algebra A which admits an outer elementary derivation?
The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C^*-algebras.
- C^*-algebras with Hausdorff primitive spectrum.
- Quotients of AW^*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^*-algebra A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^*-algebra A which admits an outer elementary derivation?

Motivated by our previous discussion, it is natural to start looking for possible examples in the class of C^*-algebras with $Orc(A) = \infty$.

Example

Derivations and elem. operators

UCD, January 9, 2015 12 / 14
Example (G., 2010)

Let A be a C^*-algebra consisting of all elements $a \in C([0, \infty]) \otimes \mathbb{M}_2$ such that

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:
Example (G., 2010)

Let A be a C^*-algebra consisting of all elements $a \in C([0, \infty)) \otimes \mathbb{M}_2$ such that

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $\text{Orc}(A) = \infty$.

\[\]
Example (G., 2010)

Let A be a C^*-algebra consisting of all elements $a \in C([0, \infty]) \otimes M_2$ such that

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $\text{Orc}(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits an outer elementary derivation.
Example (G., 2010)

Let A be a C^*-algebra consisting of all elements $a \in C([0, \infty)) \otimes M_2$ such that

$$a(n) = \begin{bmatrix} \lambda_n(a) & 0 \\ 0 & \lambda_{n+1}(a) \end{bmatrix} \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits an outer elementary derivation.

More recently, Richard Timoney showed that the above C^*-algebra admits outer derivations δ of the form $\delta = M_{a,b} - M_{b,a}$ for some $a, b \in A$. In particular A has outer elementary derivations of length 2.
I end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \geq 2$ find a C^*-algebra A which admits an (outer) elementary derivation of length n?
I end this lecture with some problems of current interest:

Problem
What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \geq 2$ find a C^*-algebra A which admits an (outer) elementary derivation of length n?

Problem
Does every unital C^*-algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?
I end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \geq 2$ find a C^*-algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^*-algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\text{Inn}(A)} \subseteq \mathcal{E}_\ell(A)$?
I end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \geq 2$ find a C^*-algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^*-algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\text{Inn}(A)} \subseteq \mathcal{E}_\ell(A)$?

Problem

What can be said about $\overline{\text{Der}(A) \cap \mathcal{E}_\ell(A)}$?