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Definition

A C ∗-algebra is a (complex) Banach ∗-algebra A whose norm ‖ · ‖
satisfies the C ∗-identity. More precisely:

A is a Banach algebra over the field C.

A is equipped with an involution, i.e. a map ∗ : A→ A, a 7→ a∗

satisfying the properties:

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.

Norm ‖ · ‖ satisfies the C ∗-identity, i.e.

‖a∗a‖ = ‖a‖2

for all a ∈ A.

Throughout this talk, we assume that all C ∗-algebras have identity
elements.
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Fundamental examples

Let X be a compact Hausdorff space and let C (X ) be the set of all
continuous complex-valued functions on X . Then C (X ) becomes a
C ∗-algebra with respect to the pointwise operations, involution
f ∗(x) := f (x), and max-norm ‖f ‖∞ := sup{|f (x)| : x ∈ X}.
Obviously, C (X ) is commutative C ∗-algebra. Moreover, every
commutative C ∗-algebra arises in this fashion (Gelfand-Naimark
theorem).

The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In fact, every C ∗-algebra can be
isometrically embedded as a norm-closed self-adjoint subalgebra of
B(H) for some Hilbert space H (Gelfand-Naimark theorem).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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Definition

A derivation on a C ∗-algebra A is a linear map δ : A→ A satisfying the
Leibniz rule

δ(xy) = δ(x)y + xδ(y) for all x , y ∈ A.

Basic properties of derivations on C ∗-algebras

Every derivation δ on a C ∗-algebra A satisfies the following properties:

δ is completely bounded and its cb-norm coincides with its operator
norm (i.e. ‖δ‖cb = ‖δ‖).

δ preserves the (closed two-sided) ideals of A (i.e. δ(I ) ⊆ I for every
ideal I of A).

δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z (A)). In
particular, commutative C ∗-algebras don’t admit non-zero derivations.
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Definition

Each element a ∈ A induces an inner derivation δa on A given by

δa(x) := ax − xa (x ∈ A).

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on
A and the set of all inner derivations on A.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

von Neumann algebras (Kadison-Sakai, 1966).

simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

homogeneous C ∗-algebras (Sproston, 1976).
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Ilja Gogić (TCD) Derivations and elem. operators UCD, January 9, 2015 5 / 14



Definition

Each element a ∈ A induces an inner derivation δa on A given by

δa(x) := ax − xa (x ∈ A).

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on
A and the set of all inner derivations on A.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

von Neumann algebras (Kadison-Sakai, 1966).

simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

homogeneous C ∗-algebras (Sproston, 1976).
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In fact, for separable C ∗-algebras the above problem was completely solved
back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C ∗-algebra A the following conditions are equivalent:

A admits only inner derivations.

A is a direct sum of a finite number of C ∗-subalgebras which are
either homogeneous or simple.

Der(A) is separable in the operator norm.

On the other hand, for inseparable C ∗-algebras the main problem remains
widely open, even for the simplest cases such as subhomogeneous
C ∗-algebras (i.e. C ∗-algebras which have finite-dimensional irreducible
representations of bounded degree).
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Motivation

We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

On C ∗-algebras A, however, it is natural to regard two-sided
multiplication maps Ma,b : x 7→ axb (a, b ∈ A) as basic building
blocks (instead of rank one operators).

We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

By E`(A) we denote the set of all elementary operators on A. It is easy to
see that every elementary operator on A is completely bounded, with∥∥∥∥∥∑

i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

ai ⊗ bi

∥∥∥∥∥
h

,

where ‖ · ‖h is the Haagerup tensor norm on A⊗ A.
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Ilja Gogić (TCD) Derivations and elem. operators UCD, January 9, 2015 7 / 14



Motivation

We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

On C ∗-algebras A, however, it is natural to regard two-sided
multiplication maps Ma,b : x 7→ axb (a, b ∈ A) as basic building
blocks (instead of rank one operators).

We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

By E`(A) we denote the set of all elementary operators on A. It is easy to
see that every elementary operator on A is completely bounded, with∥∥∥∥∥∑

i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

ai ⊗ bi

∥∥∥∥∥
h

,

where ‖ · ‖h is the Haagerup tensor norm on A⊗ A.
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Since every δ ∈ Der(A) preserve the ideals of A and is completely
bounded, the above approximation procedure in particular applies to the
derivations of C ∗-algebras:

Problem

Which derivations of a C ∗-algebra A admit a completely bounded
approximation by elementary operators? That is, which derivations of A lie

in the cb-norm closure E`(A)
cb

of E`(A)?

Remark

Since each inner derivation is an elementary operator (of length 2) on

A, E`(A)
cb

includes the cb-corm closure of Inn(A).

Since the cb-norm of an inner derivation of a C ∗-algebra coincides
with its operator norm (easy to verify), the cb-norm closure of Inn(A)
coincides with the operator norm closure of Inn(A). We denote this

closure by Inn(A).
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Problem (G., 2013)

Does every C ∗-algebra satisfy the condition

Der(A) ∩ E`(A)
cb

= Inn(A)?

In many cases the set Inn(A) is closed in the operator norm. However, this
is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if
and only if A has a finite connecting order.
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Connecting order of a C ∗-algebra

The connecting order of a C ∗-algebra is a constant in N ∪ {∞} arising
from a certain graph structure on the primitive spectrum Prim(A):

Two primitive ideals P,Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

A path of length n from P to Q is a sequence of points
P = P0,P1, . . . ,Pn = Q such that Pi−1 is adjacent to Pi for all
1 ≤ i ≤ n.

The distance d(P,Q) from P to Q is defined as follows:

. d(P,P) := 1.

. If P 6= Q and there exists a path from P to Q, then d(P,Q) is equal
to the minimal length of a path from P to Q.

. If there is no path from P to Q, d(P,Q) :=∞.

The connecting order Orc(A) of A is then defined by

Orc(A) := sup{d(P,Q) : P,Q ∈ Prim(A) such that d(P,Q) <∞}.
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Theorem (G., 2013)

The equality Der(A) ∩ E`(A)
cb

= Inn(A) holds true for all C ∗-algebras A
in which every Glimm ideal is prime.

Recall that the Glimm ideals of a C ∗-algebra A are the ideals generated
by the maximal ideals of the centre of A.

If a C ∗-algebra A has only prime Glimm ideals, then Orc(A) = 1, so
Somerset’s theorem yields that Inn(A) is closed in the operator norm.
Hence:

Corollary

If every Glimm ideal of a C ∗-algebra A is prime, then every derivation of A

which lies in E`(A)
cb

is inner.
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Example

The class of C ∗-algebras in which every Glimm ideal is prime is fairly large.
It includes:

Prime C ∗-algebras.

C ∗-algebras with Hausdorff primitive spectrum.

Quotients of AW ∗-algebras.

Local multiplier algebras.

By an elementary derivation on a C ∗-algebra A we mean every
derivation on A which is also an elementary operator on A.

Question

Does there exist a C ∗-algebra A which admits an outer elementary
derivation?

Motivated by our previous discussion, it is natural to start looking for
possible examples in the class of C ∗-algebras with Orc(A) =∞.
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Ilja Gogić (TCD) Derivations and elem. operators UCD, January 9, 2015 12 / 14



Example

The class of C ∗-algebras in which every Glimm ideal is prime is fairly large.
It includes:

Prime C ∗-algebras.

C ∗-algebras with Hausdorff primitive spectrum.

Quotients of AW ∗-algebras.

Local multiplier algebras.

By an elementary derivation on a C ∗-algebra A we mean every
derivation on A which is also an elementary operator on A.

Question

Does there exist a C ∗-algebra A which admits an outer elementary
derivation?

Motivated by our previous discussion, it is natural to start looking for
possible examples in the class of C ∗-algebras with Orc(A) =∞.
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Example (G., 2010)

Let A be a C ∗-algebra consisting of all elements a ∈ C ([0,∞])⊗M2 such
that

a(n) =

[
λn(a) 0

0 λn+1(a)

]
(n ∈ N),

for some convergent sequence (λn(a)) of complex numbers. Then:

d(ker λ1, ker λn) = n for all n ∈ N. In particular, Orc(A) =∞.

E`(A) is closed in the cb-norm.

In particular, A admits an outer elementary derivation.

More recently, Richard Timoney showed that the above C ∗-algebra admits
outer derivations δ of the form δ = Ma,b −Mb,a for some a, b ∈ A. In
particular A has outer elementary derivations of length 2.
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I end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In
particular, can one for each n ≥ 2 find a C ∗-algebra A which admits an
(outer) elementary derivation of length n?

Problem

Does every unital C ∗-algebra A with Orc(A) =∞ admit an outer
elementary derivation?

Problem

When do we have Inn(A) ⊆ E`(A)?

Problem

What can be said about Der(A) ∩ E`(A)?
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