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C ∗-algebras as noncommutative topology

Definition

A (unital) C ∗-algebra is a complex Banach ∗-algebra A whose norm ∥ · ∥
satisfies the C ∗-identity. More precisely:

A is a Banach algebra with identity over C.
A is equipped with an involution, i.e. a map ∗ : A → A, a 7→ a∗

satisfying the properties:

(αa+ βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.
Norm ∥ · ∥ satisfies the C ∗-identity, i.e.

∥a∗a∥ = ∥a∥2

for all a ∈ A.
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Example

Let X be a CH (compact Hausdorff) space and let C (X ) be the set of all
continuous complex-valued functions on X . Then C (X ) becomes a
commutative C ∗-algebra with respect to the pointwise operations,
involution f ∗(x) := f (x), and sup-norm ∥f ∥∞ := sup{|f (x)| : x ∈ X}.

In fact, all unital commutative C ∗-algebras arise in this fashion:

Theorem (Gelfand-Naimark)

The (contravariant) functor X ⇝ C (X ) defines an equivalence of
categories of CH spaces (with continuous maps as morphisms) and
commutative C ∗-algebras (with ∗-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra C (X ),
no information is lost. In fact, X can be recovered from C (X ). Thus,
topological properties of X can be translated into algebraic properties of
C (X ), and vice versa. Therefore, the theory of C ∗-algebras is often
thought of as noncommutative topology.
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Example

The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn = Mn(C) are C ∗-algebras.

In fact, every C ∗-algebra can be isometrically embedded as a
norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H
(the noncommutative Gelfand-Naimark theorem).

To every locally compact group G , one can associate a C ∗-algebra
C ∗(G ). Everything about the representation theory of G is encoded
in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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Homogeneous C ∗-algebras

In the light of noncommutative topology it is natural to try to view a given
unital C ∗-algebra A as a set of sections of some sort of the bundle. For
example, C (X ) is the family of sections of a trivial bundle over X .

This idea in particularly works well for the following class of C ∗-algebras:

Definition

A C ∗-algebra A is called (n-)homogeneous if all irreducible
representations of A are of the same finite dimension (n).

Example

The 1-homogeneous C ∗-algebras are precisely the commutative ones,
hence of the form A = C (X ) for CH spaces X .

Example

For any CH space X , the C ∗-algebra C (X )⊗Mn is n-homogeneous.
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Example

More generally, if E is a locally trivial fibre bundle over a CH space X with
fibre Mn and structure group Aut(Mn) ∼= PU(n) = U(n)/S1 (the
projective unitary group), then the set Γ(E) of all continuous sections of E
is an n-homogeneous C ∗-algebra, with respect to the fiberwise operations
and sup-norm.

Theorem (Fell & Tomiyama-Takesaki)

If A is an n-homogeneous C ∗-algebra, then its spectrum X is a CH space
and there is a locally trivial bundle E over X with fibre Mn and structure
group PU(n) such that A is isomorphic to the section algebra Γ(E).
Moreover, any two such algebras Ai = Γ(Ei ) with spectra Xi are
isomorphic if and only if there is a homeomorphism f : X1 → X2 such that
E1 ∼= f ∗(E2) as bundles over X1.

In particular, the classification problem of n-homogeneous C ∗-algebras over
X is equivalent to the classification problem of PU(n)-bundles over X .
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From the general theory we know that any topological group G admits the
universal G -bundle EG over BG (where BG is the classifying space of
G ), which has the property that any G -bundle E over a CW-complex X is
isomorphic to the induced G -bundle f ∗(EG ) for some continuous map
f : X → BG .

Since any two homotopic maps induce isomorphic bundles, the map
[f ] 7→ [f ∗(EG )] defines a bijection between the homotopy classes [X ,BG ]
onto the isomorphism classes Bun(X ,G ) of G -bundles over X .

We know that the classifying space of U(n) is Gn(C∞), i.e. the inductive
limits of complex Grassmanians. What is the classifying space of PU(n)?
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Ilja Gogić (University of Zagreb) Algebraic topology and operator algebras XXII GS, 2024 7 / 29



From the general theory we know that any topological group G admits the
universal G -bundle EG over BG (where BG is the classifying space of
G ), which has the property that any G -bundle E over a CW-complex X is
isomorphic to the induced G -bundle f ∗(EG ) for some continuous map
f : X → BG .

Since any two homotopic maps induce isomorphic bundles, the map
[f ] 7→ [f ∗(EG )] defines a bijection between the homotopy classes [X ,BG ]
onto the isomorphism classes Bun(X ,G ) of G -bundles over X .

We know that the classifying space of U(n) is Gn(C∞), i.e. the inductive
limits of complex Grassmanians. What is the classifying space of PU(n)?
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As an illustration, we present a result which can be used in order to classify
the PU(n)-bundles over spaces of the form Σ(Y ) (the suspension of Y ).

Theorem

If the group G is path-connected, then there exists a bijection between the
equivalence classes of G -bundles over X = Σ(Y ) and the homotopy
classes [Y ,G ].

In particular, since Σ(Sk−1) = Sk , we have:

Corollary

If the group G is path-connected, then there is a bijection between the
equivalence classes of G -bundles over Sk and the elements of
(k − 1)th-homotopy group πk−1(G ).
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The lower homotopy groups of G = PU(n) are known. In particular, for
X = Sk , we get:

No. of isomorphism classes of n-homogeneous C ∗-algebras over Sk

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

S1 1 1 1 1 1 1 1 1 1 1

S2 1 2 3 4 5 6 7 8 9 10

S3 1 1 1 1 1 1 1 1 1 1

S4 1 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0

S5 1 2 1 1 1 1 1 1 1 1

S6 1 2 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0

S7 1 12 6 1 1 1 1 1 1 1
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We end this part of the talk with the following interesting result:

Theorem (Antonevič-Krupnik)

If X = Sk , then:
(a) Any PU(n)-bundle over X is trivial as a vector bundle.

(b) Any PU(n)-bundle E over X is of the form E = End(V) for some
n-dimensional vector bundle V over X .

Problem

Which manifolds/CW-complexes X satisfy the property (a) or (b) of the
preceeding theorem?
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Algebraic characterization of homogeneous C ∗-algebras

Standard polynomial of degree k is a polynomial in k non-commuting
variables x1, . . . , xk defined by

sk(x1, . . . , xk) :=
∑
σ∈Sk

sign(σ)xσ(1) · · · xσ(k),

where Sk is a symmetric group of order k.

Definition

We say that a ring R satisfies the standard identity sk if for each k-tuple
(r1, . . . , rk) of elements in R we have sk(r1, . . . , rk) = 0.

Theorem (Amitsur-Levitzki)

If R is a unital commutative ring, then the ring Mn(R) of n × n matrices
over R satisfies the standard identity s2n.
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Definition

A (unital) ring R is said to be an An-ring if:

(a) R satisfies the standard identity s2n; and

(b) No non-zero homomorphic image of R satisfies the standard identity
s2(n−1).

Corollary

A C ∗-algebra A is an An-ring if and only if A is n-homogeneous.

Definition

A (unital) ring R with centre Z is said to be Azumaya over Z if:

(a) R is a finitely generated projective Z -module; and

(b) The canonical homomorphism

θ : A⊗Z A◦ → EndZ (R), θ(a⊗ b)(x) = axb

is an isomorphism.
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If R iz Azumaya over Z , then R is a finitely generated projective Z -module
and hence has a rank function Spec(R) → N0. If this function is constant
then R is said to be of constant rank (this number is a perfect square).

Theorem (Artin)

A ring R is an An-ring if and only if R iz Azumaya of constant rank n2.

Therefore, for a C ∗-algebra A we have:
A is n-homogeneous ⇐⇒ A is an An-ring ⇐⇒ A is Azumaya of constant
rank n2.

Theorem (G.)

For a C ∗-algebra A with centre Z the following conditions are equivalent:

(a) A is Azumaya.

(b) A is finitely generated Z -module (projectivity is not assumed).

(c) A is a finite direct sum of homogeneous C ∗-algebras.
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Ilja Gogić (University of Zagreb) Algebraic topology and operator algebras XXII GS, 2024 13 / 29



If R iz Azumaya over Z , then R is a finitely generated projective Z -module
and hence has a rank function Spec(R) → N0. If this function is constant
then R is said to be of constant rank (this number is a perfect square).

Theorem (Artin)

A ring R is an An-ring if and only if R iz Azumaya of constant rank n2.

Therefore, for a C ∗-algebra A we have:
A is n-homogeneous ⇐⇒ A is an An-ring ⇐⇒ A is Azumaya of constant
rank n2.

Theorem (G.)

For a C ∗-algebra A with centre Z the following conditions are equivalent:

(a) A is Azumaya.

(b) A is finitely generated Z -module (projectivity is not assumed).

(c) A is a finite direct sum of homogeneous C ∗-algebras.
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Hilbert C ∗-modules

Hilbert C ∗-modules form a category in between Banach spaces (they
have a little extra geometrical structure) and Hilbert spaces (they are
not as well behaving as these).

A Hilbert C ∗-module obeys the same axioms as an ordinary Hilbert
space, except that the inner product takes values in a more general
C ∗-algebras than C.
Hilbert C ∗-modules were first introduced in the work of I. Kaplansky
in 1953, who developed the theory for unital commutative
C ∗-algebras. In the 1970s the theory was extended to
non-commutative C ∗-algebras independently by W. Paschke and M.
Rieffel.

Hilbert C ∗-modules appear naturally in many areas of C ∗-algebra
theory, such as KK-theory, Morita equivalence of C ∗-algebras, and
completely positive operators.
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Definition

Let A be a C ∗-algebra. A (left) Hilbert A-module is a left A-module M,
equipped with an A-valued inner product ⟨·, ·⟩ which is A-linear in the first
and conjugate linear in the second variable, such that M is a Banach space
with the norm

∥v∥ :=
√

∥⟨v , v⟩∥A.

Example

Every C ∗-algebra A becomes a Hilbert A-module with respect to the inner
product

⟨a, b⟩ := ab∗.
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Example

Similarly, the direct sum An of n-copies of A becomes an A-Hilbert module
with respect to the pointwise operations and the inner product

⟨a1 ⊕ · · · ⊕ an, b1 ⊕ · · · ⊕ bn⟩ :=
n∑

k=1

akb
∗
k .

More generally, let

HA :=

{
(ak) ∈

∞∏
1

A :
∞∑
k=1

aka
∗
k is norm convergent

}
.

Then the pointwise operations and the inner product

⟨(ak), (bk)⟩ :=
∞∑
k=1

akb
∗
k

turn HA into a Hilbert A-module – a standard Hilbert A-module.
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When a C ∗-algebra A is unital and commutative, A = C (X ), there exists a
categorical equivalence between Hilbert A-modules and (F) Hilbert
bundles over X . (F) Hilbert bundles provide a natural generalization of
standard vector bundles from topology.

Definition

An (F) Hilbert bundle is a triple E := (p,E ,X ) where E and X are
topological spaces with a continuous open surjection p : E → X , together
with operations and norms making each fibre Ex := p−1(x) (x ∈ X ) into a
complex Hilbert space, such that the following conditions are satisfied:

The maps C× E → E , E ⊕X E → E and E ⊕X E → C given in each
fibre by scalar multiplication, addition, and the inner product,
respectively, are continuous. Here E ⊕X E denotes the Whitney sum

{(e, f ) ∈ E × E : p(e) = p(f )}.

If x ∈ X and if (eα) is a net in E such that ∥eα∥ → 0 and p(eα) → x
in X , then eα → 0x in E (where 0x is the zero-element of Ex).
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As usual, we say that p is the projection, E is the bundle space and X is
the base space of E .

Example

The simplest example of an (F) Hilbert bundle is the product bundle over
X with fibre H, ϵ(X ,H) := (proj1,X × H,H), where H is a Hilbert space.

Example

Every locally trivial complex vector bundle E over a (para)compact
Hausdorff space becomes an (F) Hilbert bundle for a choice of a
Riemannian metric on E . In fact, an (F) Hilbert bundle structure on E is
essentially unique.

Ilja Gogić (University of Zagreb) Algebraic topology and operator algebras XXII GS, 2024 18 / 29



As usual, we say that p is the projection, E is the bundle space and X is
the base space of E .

Example

The simplest example of an (F) Hilbert bundle is the product bundle over
X with fibre H, ϵ(X ,H) := (proj1,X × H,H), where H is a Hilbert space.

Example

Every locally trivial complex vector bundle E over a (para)compact
Hausdorff space becomes an (F) Hilbert bundle for a choice of a
Riemannian metric on E . In fact, an (F) Hilbert bundle structure on E is
essentially unique.
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A section of an (F) Hilbert bundle E = (p,E ,X ) is any continuous right
inverse of p : E → X . By Γ(E) we denote the set of all of sections of E .

If X is a CH space, then Γ(E) becomes a Hilbert C (X )-module with
respect to the action

(φs)(x) := φ(x)s(x)

and inner product
⟨s, u⟩(x) := ⟨s(x), u(x)⟩x ,

where ⟨·, ·⟩x denotes the inner product on fibre Ex .

In fact, all Hilbert C (X )-modules arise in this fashion:

Theorem

To any Hilbert C (X )-module M one can associate a natural (F) Hilbert
bundle EM such that the (generalized) Gelfand transform
ΓM : M → Γ(EM) becomes an isometric C (X )-linear isomorphism.
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Finitely generated Hilbert C (X )-modules

A Hilbert A-module M is said to be:

algebraically finitely generated (AFG) if there exists a finite subset
of M whose A-linear span equals M.

weakly algebraically finitely generated (WAFG) if there exists a
constant k = k(A) ∈ N such that every AFG submodule of M is
contained in a submodule od M generated by ≤ k generators.

topologically finitely generated (TFG) if there exists a finite subset
of M whose A-linear span is dense M.

countably generated (CG) if there exists a countable subset of M
whose A-linear span is dense M.

Theorem (Kasparov stabilization theorem)

If M is a CG Hilbert A-module, then M ⊕HA
∼= HA, where HA is a

standard Hilbert A-module.
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Corollary

Every AFG Hilbert module (over a unital C ∗-algebra) is automatically
projective.

An (F) Hilbert bundle E = (p,E ,X ) is said to be:

Locally trivial if there exists a Hilbert space H and an open cover U
of X such that for each U ∈ U we have E|U ∼= ϵ(U,H).

n-homogeneous, if all fibres of E have the same finite dimension n.

Lemma

Any n-homogeneous (F) Hilbert bundle is automatically locally trivial.
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In particular, when A = C (X ), we get a Hilbert module version of the
celebrated Serre-Swan theorem:

Theorem

Let M be a Hilbert C (X )-module, where X is a CH space, and let
E := EM . Then M is AFG if and only if there exists a finite clopen partition
X = X1 ⊔ · · · ⊔ Xk such that each restriction bundle E|Xi

is homogeneous.

Hence, the category of n-homogeneous (F) Hilbert bundles over
(connected) CH spaces is equivalent to the category of n-dimensional
(locally trivial) complex vector bundles.
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The main difference between AFG and TFG Hilbert C (X )-modules is the
fact that TFG Hilbert C (X )-modules are not generally projective.

In particular, the dimension of the fibres of the canonical (F) Hilbert
bundle may vary, even when X is connected:

Example

let X be the unit interval [0, 1] and let

M := C0((0, 1]) = {f ∈ C ([0, 1]) : f (0) = 0}.

Then M becomes a Hilbert C ([0, 1])-module with respect to the standard
action and inner product ⟨f , g⟩ = fg∗.

M is topologically singly generated (for instance, the identity function
f (x) = x is such generator, by the Weierstrass approximation
theorem).

On the other hand, each fibre of EM is one-dimensional, except at
x = 0 which is zero.
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Besides the ”fibre dimension drop phenomenon” (subhomogeneity vs
homogeneity) for canonical (F) bundles of TFG Hilbert C (X )-modules,
there is also another requirement (the finite type condition).

If all fibres of an (F) Hilbert bundle E are finite dimensional and

n := sup
x∈X

dimEx < ∞,

we say that E is n-subhomogeneous.

In that case every restriction bundle of E over a set where dimEx is
constant is locally trivial.

If in addition every base space of such restriction bundle admits a
finite trivializing open cover, then we say that E is
n-subhomogeneous of finite type.
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Theorem (G.)

Let X be a compact metrizable space and let M be a Hilbert
C (X )-module with the canonical (F) Hilbert bundle EM . The following
conditions are equivalent:

(a) M is TFG.

(b) EM is subhomogeneous of finite type.

(c) M is WAFG.

(d) There exists a constant k = k(M) ∈ N such that for any Banach
C (X )-module V , each tensor in the C (X )-projective tensor product

M
π
⊗C(X ) V is of (finite) rank at most k .

Remark

Recently, A. Chirvasitu removed the metrizabilty requirement.
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C (X )-convex Banach modules

Definition

Let A be a unital Banach algebra. A left (unital) Banach A-module is
Banach space M, which is also a left A-module such that the action
A×M → M, (a, x) 7→ ax is continuous (i.e. ∥ax∥ ≤ ∥a∥∥x∥ for all a ∈ A
and x ∈ M) and 1x = x for all x ∈ M.

Example

If X is a CH space, one can similarly define a notion of an (F) or (H)
bundle E = (p,E ,X ) (in the (H) case the norm E → X is only required to
be upper semicontinuous). Then Γ(E) is a Banach C (X )-module.

For a Banach C (X )-module M, one can also construct a canonical Banach
bundle EM and the generalized Gelfand transform ΓM : M → Γ(EM).
However, in general:

EM is only an (H) bundle.

ΓM fails to be isometric.
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If M is a Banach C (X )-module one can look for conditions which might
guarantee that ΓM is isometric. This was solved by K. Hofmann in 1974.

Definition

Let M be a Banach C (X )-module. We say that M is C (X )-convex if for
any pair φ1, φ2 ∈ C (X )+ with φ1 + φ2 = 1 and s1, s2 ∈ M, we have

∥φ1s1 + φ2s2∥ ≤ max{∥s1∥, ∥s2∥}.

Example

If E is an (H) Banach bundle over a CH space X , then the Banach
C (X )-module Γ(E ) is C (X )-convex.

In that way we essentially get all C (X )-convex modules:

Theorem (Hofmann)

If M is a Banach C (X )-module, then ΓM defines an isometric
C (X )-isomorphism from M onto Γ(EM) if and only if M is C (X )-convex.
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The next example shows that we cannot extend our results from Hilbert
C (X )-modules to general C (X )-convex modules, unless the canonical
bundles are (F) bundles:

Example

We consider M := C ([0, 1]) as Banach module over C (S1), with respect to
the action

(φf )(x) := φ(e2πix)f (x).

All fibres of EM (which is an (H) Banach bundle over S1) are
1-dimensional, except at 1, where dim = 2.

On the other hand, it is easy to see that M is AFG (2 generators
suffice).
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Problem (G.)

Let E be an (F) Banach bundle over a CH space X and let M := Γ(E).
(a) If M is AFG, is M automatically projective ( ⇐⇒ homogeneity of E ,

when X is connected)?

(b) Are all TFG conditions for M, from the Hilbert C (X )-module case,
always equivalent?

A several days ago A. Chirvasitu informed me that:

Theorem (Chirvasitu - arxiv.org/pdf/2405.14518)

The answer to (b) is positive.
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