Spectrum-shrinking maps and nonlinear preservers on matrix domains

Ilja Gogić

Department of Mathematics, Faculty of Science University of Zagreb

European Non-Associative Algebra Seminar October 13, 2025

based on a joint work with Alexandru Chirvasitu and Mateo Tomašević

Jordan homomorphisms

Let $\mathcal A$ and $\mathcal B$ be rings (associative algebras). A **Jordan homomorphism** is an additive (linear) map $\phi:\mathcal A\to\mathcal B$ such that

$$\phi(ab+ba) = \phi(a)\phi(b) + \phi(b)\phi(a),$$
 for all $a,b \in \mathcal{A}$.

When the rings (algebras) are 2-torsion-free, this is equivalent to

$$\phi(a^2) = \phi(a)^2$$
, for all $a \in \mathcal{A}$.

- Jordan homomorphisms are morphisms in the category of Jordan algebras, a class of nonassociative algebras introduced by Pascual Jordan in 1933 in the context of quantum mechanics.
- Most practically relevant Jordan algebras arise as subalgebras of associative algebras equipped with the *symmetric product* x ∘ y := xy + yx.
- Unlike Lie algebras, which always embed into associative algebras via the *antisymmetric product* [x, y] := xy yx, some Jordan algebras (known as **exceptional Jordan algebras**) do not arise this way.

Typical examples of Jordan homomorphisms include additive (linear) multiplicative and antimultiplicative maps.

Let $\mathcal A$ be a unital algebra, and let $p\in\mathcal A$ be a central idempotent. Suppose that $\phi,\psi:\mathcal A\to\mathcal A$ are an algebra endomorphism and an antiendomorphism, respectively. Then the map

$$x \mapsto p\phi(x) + (1-p)\psi(x)$$

defines a Jordan endomorphism of \mathcal{A} , which, in general, is neither multiplicative nor antimultiplicative.

One of the central problems, with a long and extensive history: is to identify conditions on rings (algebras) $\mathcal A$ and $\mathcal B$ under which any (typically surjective) Jordan homomorphism $\phi:\mathcal A\to\mathcal B$ is either multiplicative or antimultiplicative, or more generally, can be expressed as a suitable combination of these types.

Let us briefly mention some state-of-the-art results:

- (Jacobson-Rickart, 1950) Every Jordan homomorphism from an arbitrary ring into an integral domain is either a multiplicative or antimultiplicative.
- (Jacobson–Rickart, 1950) Let R be a unital ring, S any ring, and $n \geq 2$. Then every Jordan homomorphism $\mathcal{M}_n(R) \to S$ is the sum of a ring homomorphism and an antihomomorphism.
- (Herstein, 1956; Smiley, 1957) Every Jordan epimorphism from an arbitrary ring into a prime ring (i.e., aRb = 0 implies a = 0 or b = 0) is either a multiplicative or antimultiplicative.

In particular, for the matrix algebra $\mathcal{M}_n(\mathbb{F})$ over a field \mathbb{F} , a direct consequence of Herstein's theorem and the Skolem–Noether theorem is that every nonzero Jordan endomorphism ϕ of $\mathcal{M}_n(\mathbb{F})$ is of the form

$$\phi(X) = TXT^{-1}$$
 or $\phi(X) = TX^{t}T^{-1}$,

for some invertible matrix $T \in \mathcal{M}_n(\mathbb{F})$.

The study of Jordan homomorphisms is of particular importance in the theory of Banach algebras.

Let \mathcal{A} be a unital complex algebra, and let $a \in \mathcal{A}$. We denote the *spectrum* of $a \in \mathcal{A}$ by sp(a), i.e.

$$sp(a) := \{ \lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible in } \mathcal{A} \}.$$

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a map between unital algebras. We say that ϕ :

- preserves invertibility if: $\forall a \in A$, a invertible $\implies \phi(a)$ invertible,
- preserves invertibility in both directions if: $\forall a \in A$, a is invertible $\iff \phi(a)$ is invertible,
- shrinks the spectrum if: $\forall a \in A$, $sp(\phi(a)) \subseteq sp(a)$,
- preserves the spectrum if: $\forall a \in A$, $sp(\phi(a)) = sp(a)$.

Note that for *linear unital* maps $\phi:\mathcal{A}\to\mathcal{B}$ we have:

 ϕ preserves invertibility $\iff \phi$ is spectrum-shrinking,

 ϕ preserves invertibility in both directions $\iff \phi$ is spectrum-preserving

It is well-known (and easy to verify) that any unital Jordan homomorphism $\phi:\mathcal{A}\to\mathcal{B}$ between unital algebras \mathcal{A} and \mathcal{B} preserves invertibility.

Recall the following classical results:

Theorem (Marcus-Purves, 1959)

Every linear unital invertibility-preserving map on $\mathcal{M}_n = \mathcal{M}_n(\mathbb{C})$ is either multiplicative or antimultiplicative, and consequently a Jordan automorphism of \mathcal{M}_n .

Theorem (Gleason-Kahane-Żelazko, 1967-1968)

Let $\mathcal A$ be a unital Banach algebra and $\phi: \mathcal A \to \mathbb C$ a linear unital map which preserves invertibility. Then ϕ is multiplicative. The same is true if $\mathbb C$ is replaced by any unital commutative semisimple Banach algebra $\mathcal B$.

Kaplansky-Aupetit Conjecture, 1970, 2000

Let $\mathcal A$ and $\mathcal B$ be unital semisimple Banach algebras, and let $\phi:\mathcal A\to\mathcal B$ be a surjective unital invertibility-preserving linear map. Then ϕ is a Jordan homomorphism.

When $\mathcal B$ is semisimple, it is well-known that any surjective unital linear map $\phi:\mathcal A\to\mathcal B$ for which there exists a constant $M\ge 0$ such that

$$r(\phi(a)) \le M r(a)$$
, for all $a \in \mathcal{A}$,

 $(r(\cdot))$ denotes the spectral radius) is necessarily continuous (Aupetit, 1991).

The following example illustrates that surjectivity is indispensable when $\mathcal{A} \neq \mathcal{B}$.

Example (Russo, 1966)

Define a linear map $\phi: \mathcal{M}_2 o \mathcal{M}_4$ by

$$\phi(X) := \begin{bmatrix} X & X - X^t \\ 0 & X \end{bmatrix}.$$

This map is unital, injective, and spectrum-preserving. However, ϕ is not a Jordan homomorphism, since for any non-symmetric matrix X, we have

$$\phi(X^2) - \phi(X)^2 = \begin{bmatrix} 0 & (X - X^t)^2 \\ 0 & 0 \end{bmatrix} \neq 0.$$

Semisimplicity is essential, even when ϕ is a spectrum-presering bijection.

Example (Aupetit, 1979)

Let $\mathcal{A}\subseteq\mathcal{M}_4$ consist of all block upper-triangular matrices of the form

$$X = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$
, with $A, B, C \in \mathcal{M}_2$.

Define $\phi: \mathcal{A} \to \mathcal{A}$ by

$$\phi\left(\begin{bmatrix}A & B\\ 0 & C\end{bmatrix}\right) := \begin{bmatrix}A & B\\ 0 & C^t\end{bmatrix}.$$

Then ϕ is a unital spectrum-preserving linear bijection. However, it fails to be a Jordan homomorphism, since in general:

$$\phi(X^2) - \phi(X)^2 = \begin{bmatrix} 0 & B(C - C^t) \\ 0 & 0 \end{bmatrix} \neq 0.$$

The Kaplansky–Aupetit conjecture has attracted considerable interest, and several special cases have been resolved. In particular, it has been verified under the following assumptions:

- (Aupetit, 1979): ${\cal B}$ admits a separating family of finite-dimensional irreducible representations.
- (Jafarian–Sorour, 1986): \mathcal{A} and \mathcal{B} are full algebras of bounded linear operators on Banach spaces, and ϕ is spectrum-preserving. (A more concise proof was provided by Šerml in 2002.)
- (Aupetit–Mouton, 1994): The socle of \mathcal{B} (i.e., the sum of all minimal left ideals) is an essential ideal in \mathcal{B} .
- (Sorour, 1996): A and B are full algebras of bounded linear operators on Banach spaces, and ϕ is bijective.
- (Aupetit, 2000; Cui-Hou, 2004): A is a von Neumann algebra.

Despite this progress, the conjecture remains unresolved in full generality, even in the setting of C^* -algebras.

Automatic spectrum preservation for spectrum-shrinking maps

In many situations it is more convenient to deal with spectrum-preserving maps. Hence, given a result for spectrum-preserving maps, a natural question is whether it extends to spectrum-shrinking counterpart.

However, the literature indicates that such extensions are generally *highly nontrivial*.

For example, Sorour's 1996 extension of the Jafarian–Sorour (1986) characterization of spectrum-preserving linear bijections between algebras of bounded operators on Banach spaces to the spectrum-shrinking case involves significantly more intricate techniques and a considerably longer proof based on complex analysis.

This leads us to the following general problem:

Problem

For which matrix or operator domains $\mathcal X$ and $\mathcal Y$ are all continuous spectrum-shrinking maps $\phi: \mathcal X \to \mathcal Y$ (when they exist) automatically spectrum-preserving?

To state our results, we begin by fixing some notation.

• Given a subset $L \subseteq \mathbb{C}^n$, by Δ_L we denote the subset of L that consists of elements with at least two equal coordinates:

$$\Delta_L := \{(x_1, \dots, x_n) \in L : x_j = x_k \text{ for some } j \neq k\}.$$

- We naturally identify the symmetric group S_n with the $n \times n$ permutation matrices, so that S_n forms a subgroup of the general linear group GL(n).
- Assuming that L is invariant under the action of S_n in \mathbb{C}^n (by conjugation), S_n also naturally acts on the set of connected components of $L \setminus \Delta_L$.
- If V is a subspace of the algebra \mathcal{T}_n^+ of $n \times n$ strictly upper-triangular matrices, denote by $\mathcal{T}_{L,V}$ the space of upper-triangular matrices with diagonal in L and strictly upper-triangular component in V, i.e.

$$\mathcal{T}_{L,V} := \{ \operatorname{diag}(\lambda_1, \dots, \lambda_n) + v : (\lambda_1, \dots, \lambda_n) \in L, \ v \in V \}.$$

Theorem (Chirvasitu-G.-Tomašević, preprint, 2025)

Given $n \in \mathbb{Z}_{\geq 1}$, a closed connected subgroup G of GL(n), a linear subspace V of \mathcal{T}_n^+ , and a subset $L \subseteq \mathbb{C}^n$, denote

$$\mathcal{X}_n := \operatorname{Ad}_{\mathsf{G}} \mathcal{T}_{L,V} = \{SXS^{-1} : X \in \mathcal{T}_{L,V}, S \in \mathsf{G}\}.$$

Assume that:

- $L \setminus \Delta_L$ is dense in L;
- L is invariant under the action of S_n in \mathbb{C}^n ;
- and the isotropy groups of the connected components of $L \setminus \Delta_L$ in $G \cap S_n$ are transitive on $[n] = \{1, 2, ..., n\}$.

Then for an arbitrary $m \in \mathbb{Z}_{\geq 1}$ there exists a continuous spectrum-shrinking map $\phi: \mathcal{X}_n \to \mathcal{M}_m$ if and only n divides m and in that case we have the equality of characteristic polynomials

$$k_{\phi(X)} = (k_X)^{\frac{m}{n}}, \quad \text{ for all } X \in \mathcal{X}_n.$$

The theorem applies to a wide array of matrix domains \mathcal{X}_n , including:

- (a) the matrix algebra \mathcal{M}_n itself,
- \bigcirc the general linear group GL(n),
- the special linear group SL(n),
- \bullet the unitary group $\mathsf{U}(n)$,
- ① the set N_n of $n \times n$ normal matrices.

It also holds for the sets of diagonalizable matrices in \mathcal{M}_n , GL(n) & SL(n).

Example:
$$\mathcal{X}_n = SL(n)$$

We have $\mathsf{SL}(n) = \mathsf{Ad}_\mathsf{G}\,\mathcal{T}_{\mathsf{L},\mathsf{V}}$ for $\mathsf{G} = \mathsf{GL}(n),\; \mathsf{V} = \mathcal{T}_n^+$ and

$$L = \left\{ (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n \ : \ \prod_{j=1}^n \lambda_j = 1
ight\}.$$

Then $L \setminus \Delta_L$ is connected (L is a connected complex algebraic variety, and Δ_L is its closed algebraic subset).

Example: $\mathcal{X}_n = \mathsf{U}(n)$

We have $U(n) = \operatorname{Ad}_G \mathcal{T}_{L,V}$ for G = U(n), $V = \{0\}$ and $L = (\mathbb{S}^1)^n$, so that $L \setminus \Delta_L = \mathcal{C}^n(\mathbb{S}^1)$ (the n^{th} configuration space of \mathbb{S}^1). One can show that:

- $C^n(\mathbb{S}^1)$ is disconnected as soon as $n \geq 3$.
- The symmetric group S_n acts transitively on the space connected components of $C^n(\mathbb{S}^1)$, and the isotropy groups are the conjugates of the subgroup generated by the cycle $(1\ 2\ \cdots\ n)$.

Example: continuous spectrum-preserving maps $\mathcal{X}_n \to \mathcal{M}_{rn}$

If m=rn for some $r\in\mathbb{Z}_{\geq 1}$, then an apparent class of continuous spectrum-preserving maps $\phi:\mathcal{X}_n\to\mathcal{M}_m=\mathcal{M}_r(\mathcal{M}_n)$ is given by

$$\phi(X) = S(X) \begin{bmatrix} X \otimes I_p & 0 \\ 0 & X^t \otimes I_q \end{bmatrix} S(X)^{-1},$$

where $S: \mathcal{X}_n \to \mathsf{GL}(m)$ is a continuous function and $p, q \in \mathbb{Z}_{\geq 0}$ are such that p+q=r.

Non-example: $\mathcal{X}_n = H_n$

The theorem does not hold for the real subspace H_n of $n \times n$ self-adjoint matrices. Indeed, the assignment

$$H_n \ni X \mapsto \lambda_{\mathsf{max}}(X) \in \mathsf{sp}(X),$$

where $\lambda_{\max}(X)$ denotes the largest eigenvalue of $X \in H_n$, is continuous. Then for any $m \in \mathbb{Z}_{\geq 2}$ the assignment

$$X \mapsto \lambda_{\mathsf{max}}(X) I_m$$

defines a continuous spectrum-shrinking map $H_n \to \mathcal{M}_m$, which is not spectrum preserving.

Non-example: $\mathcal{X}_n = SU(n)$

The special unitary group SU(n) behaves similarly as H_n . Specifically, for any $n \in \mathbb{Z}_{\geq 1}$ there exists a continuous eigenvalue selection $\varphi : SU(n) \to \mathbb{S}^1$. To see this, first identify the space $SU(n)/\operatorname{Ad}_{SU(n)}$ of conjugacy classes with the quotient \mathbb{T}/S_n of the maximal torus

Non-example: $\mathcal{X}_n = SU(n)$ (continuation)

$$\mathbb{T} := \left\{ (\lambda_1, \dots, \lambda_n) \in \left(\mathbb{S}^1
ight)^n \ : \ \prod_{j=1}^n \lambda_j = 1
ight\}$$

by the Weyl group S_n of SU(n). It is well-known (Morton, 1966) that

$$(x_1,\ldots,x_n)\mapsto (\exp(2\pi ix_1),\ldots,\exp(2\pi ix_n))$$

implements a homeomorphism between

$$F := \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{j=1}^n x_j = 0, \ x_1 \le x_2 \le \dots \le x_n \le x_1 + 1 \right\}$$

and \mathbb{T}/S_n . We can now take our continuous eigenvalue selection to be

$$\mathsf{SU}(\textit{n}) \to \mathsf{SU}(\textit{n})/\operatorname{\mathsf{Ad}}_{\mathsf{SU}(\textit{n})} \cong \mathbb{T}/S_\textit{n} \cong \textit{F} \ni (x_1,\ldots,x_\textit{n}) \mapsto \exp(2\pi \textit{i} x_1) \in \mathbb{S}^1.$$

Singular matrices

Let us now focus on subsets of singular matrices. Specifically, for $n \in \mathbb{Z}_{\geq 2}$ and $1 \leq k < n$, define

$$\mathcal{M}_n^{\leq k} := \{ \text{all } n \times n \text{ matrices of rank } \leq k \}$$

$$\operatorname{Sing}(n) := \{ \text{all } n \times n \text{ singular matrices} \} = \mathcal{M}_n^{\leq n-1}.$$

Our theorem does not apply to any of the sets $\mathcal{M}_n^{\leq k}$. Specifically:

- If $k \le n-2$, the space L of possible n-tuples of eigenvalues always contains at least two zeros. In this case, $L \setminus \Delta_L$ is empty, so certainly not dense in L.
- If k = n 1, the connected components of $L \setminus \Delta_L$ are given by

$$\{(\lambda_1,\ldots,\lambda_n)\in\mathbb{C}^n:\lambda_i \text{ pairwise distinct and }\lambda_r=0\}\,,\quad 1\leq r\leq n.$$

The corresponding isotropy groups are the subgroups $S_{n-1} \subset S_n$ fixing the r-th symbol. These groups do not act transitively on [n].

Moreover, if k < n, then for any $m \in \mathbb{Z}_{\geq 1}$, there *always* exist continuous maps $\phi : \mathcal{M}_n^{\leq k} \to \mathcal{M}_m$ that strictly shrink the spectrum:

Example

For any nilpotent matrix $N \in \mathcal{M}_m$ and continuous function $f : \mathcal{M}_n^{\leq k} \to \mathbb{C}$, the map

$$\phi: \mathcal{M}_n^{\leq k} \to \mathcal{M}_m, \qquad X \mapsto f(X)N$$

is clearly continuous and spectrum-shrinking, but not spectrum-preserving.

Question

What if we also require the injectivity of ϕ ? That is, are all injective continuous spectrum-shrinking maps

$$\phi: \mathcal{M}_n^{\leq k} \to \mathcal{M}_m$$

(when they exist) necessarily spectrum-preserving?

In short: the answer varies substantially, heavily depending on the dimensions of the underlying spaces.

For simplicity, we state the result only in the case m = n.

Theorem (Chirvasitu-G.-Tomašević, LAA, 2025)

- ① If $k > \frac{n}{2}$, any continuous spectrum-shrinking map $\phi : \mathcal{M}_n^{\leq k} \to \mathcal{M}_n$ either preserves the characteristic polynomial or takes only nilpotent values.
- ① Let $\phi: \mathcal{M}_n^{\leq k} \to \mathcal{M}_n$ be an injective continuous spectrum-shrinking map. If either

$$k > n - \sqrt{n}$$
 or $\phi(\mathcal{M}_n^{\leq k}) \subseteq \mathcal{M}_n^{\leq k}$,

then ϕ preserves the characteristic polynomial (and hence the spectrum).

⑤ For every $k \in \mathbb{Z}_{\geq 1}$ and all sufficiently large $n \in \mathbb{Z}_{\geq 1}$ there exists a real-analytic embedding

$$\phi: \mathcal{M}_n^{\leq k} \longrightarrow \mathrm{Nil}(n)$$

of $\mathcal{M}_n^{\leq k}$ into the space $\mathrm{Nil}(n)$ of all nilpotent $n \times n$ matrices.

On analytical embeddings $\mathcal{M}_n^{\leq k} \longrightarrow \mathrm{Nil}(n)$

Let us fix $n \in \mathbb{Z}_{\geq 2}$ and $1 \leq k \leq n$.

- Both spaces $\mathcal{M}_n^{\leq k}$ and $\mathrm{Nil}(n)$ are complex algebraic varieties of respective dimensions k(2n-k) and n^2-n .
- They are also *affine*, i.e. definable by polynomial equations as closed subsets of \mathbb{C}^N for appropriate N.
- This means they are Stein spaces.
- In particular, if $n^2 n \ge 2k(2n k) + 1$, by a standard result there exists a proper holomorphic embedding

$$\mathcal{M}_n^{\leq k} \hookrightarrow \mathbb{C}^{n^2-n}.$$

• In turn, \mathbb{C}^{n^2-n} is real-analytically isomorphic to a ball in the (n^2-n) -dimensional open subvariety of $\mathrm{Nil}(n)$ consisting of non-singular points.

Finite-dimensional algebras

We now turn our attention to spectrum-shrinking maps between arbitrary unital finite-dimensional complex algebras. We begin by recalling the notion of structural matrix algebras, introduced by van Wyk in 1988.

Given a quasi-order ρ on [n] (i.e. a reflexive and transitive binary relation), the **structural matrix algebra (SMA) associated with** ρ is the subalgebra of \mathcal{M}_n spanned by the matrix units E_{ij} corresponding to the pairs $(i,j) \in \rho$:

$$\mathcal{A}_{\rho} := \operatorname{span}\{E_{ij} : (i,j) \in \rho\}.$$

It is easy to see that SMAs are precisely the subalgebras of \mathcal{M}_n that contain the algebra \mathcal{D}_n of all diagonal matrices.

SMAs enjoy the following important property:

Theorem (G.-Tomašević, LAA, 2025)

Let $A_{\rho} \subseteq \mathcal{M}_n$ be an SMA, and let $\mathcal{F} \subseteq A_{\rho}$ be a commuting family of diagonalizable matrices. Then there exists an invertible matrix $S \in \mathcal{A}_{\rho}$ which simultaneously diagonalizes \mathcal{F} ; that is, $S\mathcal{F}S^{-1} \subseteq \mathcal{D}_n$.

Theorem (G.-Tomašević, to appear in JAA, 2025)

Let $\mathcal A$ and $\mathcal B$ be unital finite-dimensional complex algebras, each equipped with the unique Hausdorff vector topology. Denote by

$$\operatorname{Max}(\mathcal{A}) = \{\mathcal{P}_1, \dots, \mathcal{P}_p\}$$
 and $\operatorname{Max}(\mathcal{B}) = \{\mathcal{Q}_1, \dots, \mathcal{Q}_q\}$

the sets of all maximal ideals of ${\cal A}$ and ${\cal B}$, respectively.

For each $1 \le i \le p$ and $1 \le j \le q$ define the quantities

$$k_i := \sqrt{\dim(\mathcal{A}/\mathcal{P}_i)}$$
 and $m_j := \sqrt{\dim(\mathcal{B}/\mathcal{Q}_j)}.$

which are positive integers by Wedderburn's structure theorem. Then:

(a) There exists a continuous spectrum-shrinking map $\phi: \mathcal{A} \to \mathcal{B}$ if and only if for each $1 \leq j \leq q$ the linear Diophantine equation

$$k_1 x_1^j + \dots + k_\rho x_\rho^j = m_j \tag{1}$$

has a non-negative integer solution $(x_1^j,\dots,x_p^j)\in\mathbb{Z}_{\geq 0}^p.$

Theorem (continuation)

- **(b)** There exists a continuous spectrum-preserving map $\phi: \mathcal{A} \to \mathcal{B}$ if and only if there exists a family $\{(x_1^j,\ldots,x_p^j): 1\leq j\leq q\}$ of non-negative integer solutions to (1), with the property that for each $1\leq i\leq p$ there exists some $1\leq j\leq q$ with $x_i^j>0$.
- (c) If every continuous spectrum-shrinking map $\phi: \mathcal{A} \to \mathcal{B}$ is spectrum-preserving, then any family $\{(x_1^j, \ldots, x_p^j) : 1 \leq j \leq q\}$ of non-negative integer solutions to (1) satisfies that for each $1 \leq i \leq p$ there exists some $1 \leq j \leq q$ with $x_i^j > 0$. The converse holds when \mathcal{A} is isomorphic to an SMA.

Corollary

Let $\mathcal A$ be a unital finite-dimensional complex algebra. Then $\mathcal A$ admits a continuous "eigenvalue selection" (i.e. a spectrum shrinker $\mathcal A \to \mathbb C$) if and only if $\mathcal A$ contains an ideal of codimension one.

Remark

At present, it remains an open question whether the converse of (c) holds for arbitrary finite-dimensional algebras \mathcal{A} . When \mathcal{A} is an SMA, our proof of the converse fundamentally relies on the density of the set

$$\left\{S\operatorname{diag}(\lambda_1,\ldots,\lambda_n)S^{-1}:S\in\mathcal{A}\text{ invertible},\ \lambda_j\in\mathbb{C}\text{ pairwise distinct}\right\}$$

in \mathcal{A} . This density, in turn, depends on the simultaneous diagonalizability of commuting families of diagonalizable matrices within SMAs.

Remark

If $p \geq 2$ and the numbers k_i 's are coprime, then the largest $m \in \mathbb{N}$ for which there is no continuous spectrum-shrinking map $\phi: \mathcal{A} \to \mathcal{M}_m$ is precisely the *Frobenius number* $g(k_1,\ldots,k_p)$ (related to the coin problem), i.e. the largest integer that cannot be expressed as a sum

$$k_1x_1+\cdots+k_px_p,$$

where x_1, \ldots, x_p are non-negative integers.

Šemrl's preserver-type characterizations of Jordan homomorphisms

Let \mathcal{A} and \mathcal{B} be unital algebras, and suppose that \mathcal{B} is *central*, i.e. its centre consists only of scalar multiples of the identity.

If $\phi:\mathcal{A}\to\mathcal{B}$ is a Jordan homomorphism whose image has a trivial commutant in \mathcal{B} (e.g. if ϕ is surjective). Then, in addition to being spectrum-shrinking, ϕ is also **commutativity preserving**; that is,

$$\forall a, b \in \mathcal{A}, \quad ab = ba \implies \phi(a)\phi(b) = \phi(b)\phi(a).$$

In general, this implication fails when $\phi(A)$ has a non-trivial commutant:

Example

Consider the unital algebra

$$\mathcal{A} := \left\{ egin{bmatrix} a & b & -c & d \ 0 & a & 0 & c \ 0 & 0 & a & b \ 0 & 0 & 0 & a \end{bmatrix} : a, b, c, d \in \mathbb{C}
ight\} \subset \mathcal{M}_4.$$

Example (Continuation)

Define the map

$$\phi: \mathcal{A} \to \mathcal{M}_4, \qquad \phi \left(egin{bmatrix} a & b & -c & d \ 0 & a & 0 & c \ 0 & 0 & a & b \ 0 & 0 & 0 & a \end{bmatrix}
ight) := egin{bmatrix} a & b & -d & c \ 0 & a & 0 & d \ 0 & 0 & a & b \ 0 & 0 & 0 & a \end{bmatrix}.$$

One easily verifies that ϕ is a unital Jordan homomorphism.

However, ϕ does not preserve commutativity. Namely, we have

$$(E_{12}+E_{34})E_{14}=E_{14}(E_{12}+E_{34})=0,$$

but

$$\phi(E_{12} + E_{34})\phi(E_{14}) = (E_{12} + E_{34})(-E_{13} + E_{24}) = E_{14},$$

$$\phi(E_{14})\phi(E_{12} + E_{34}) = (-E_{13} + E_{24})(E_{12} + E_{34}) = -E_{14}.$$

We have the following important result by Šemrl:

Theorem (Šemrl, 2008)

If $n \geq 3$, any continuous map $\phi : \mathcal{M}_n \to \mathcal{M}_n$ preserving commutativity and spectrum is a Jordan automorphism of \mathcal{M}_n , and hence of the form

$$\phi(X) = TXT^{-1}$$
 or $\phi(X) = TX^tT^{-1}$,

for some invertible matrix $T \in GL(n)$.

Remark

- ullet The first version of this result was formulated by Petek and Semrl in 1998, with an additional assumption that ϕ either preserves rank-one matrices or preserves commutativity in both directions.
- Unlike the 1998 version, which relied entirely on direct computation, the proof of the current variant is based on a clever application of the Fundamental Theorem of Projective Geometry.
- The necessity of all assumptions in Šemrl's theorem was demonstrated via counterexamples.

Remark

By our previous result, the spectrum-preserving assumption in Šemrl's theorem can be further relaxed to spectrum-shrinking.

Let us now focus on the algebra \mathcal{T}_n of all upper-triangular $n \times n$ complex matrices. Similar to the \mathcal{M}_n case, it is well-known that all Jordan automorphisms ϕ of \mathcal{T}_n are of the form

$$\phi(X) = TXT^{-1}$$
 or $\phi(X) = TX^t T^{-1}$,

for suitable $T \in GL(n)$. A similar description holds for Jordan monomorphisms $\phi : \mathcal{T}_n \to \mathcal{M}_n$, with $T \in GL(n)$ arbitrary.

The structure of non-injective Jordan homomorphism on \mathcal{T}_n is more subtle:

Example

The map $\phi: \mathcal{T}_n \to \mathcal{T}_n$ that preserves the diagonal entries and annihilates all strictly upper-triangular entries is a non-injective unital Jordan homomorphism, preserving both commutativity and spectrum.

Theorem (Petek, 2002)

If $n \geq 3$, any injective continuous map $\phi: \mathcal{T}_n \to \mathcal{M}_n$ preserving commutativity and spectrum is a Jordan homomorphism.

Remark

- The same conclusion holds if the injectivity of ϕ is replaced by the condition $\phi(\mathcal{T}_n) = \mathcal{T}_n$. In this case, ϕ is a Jordan automorphism of \mathcal{T}_n .
- At present, it remains unclear whether the spectrum-preserving condition in Petek's theorem can be weakened to spectrum-shrinking, due to topological challenges. For instance, this relaxation holds for maps $\phi: \mathcal{T}_n \to \mathcal{T}_n$ by the *Invariance of Domain theorem*.

Problem

Given a multiplicatively closed subset $\mathcal{X}\subseteq\mathcal{M}_n$, under what conditions does every (injective) continuous map $\phi:\mathcal{X}\to\mathcal{M}_n$ that preserves commutativity and spectrum (or merely shrinks the spectrum) extend to a Jordan homomorphism $\widetilde{\phi}:[\mathcal{X}]_{\mathrm{alg}}\to\mathcal{M}_n$ on the unital subalgebra of \mathcal{M}_n generated by \mathcal{X} ?

Jordan monomorphisms between SMAs

Given a unital complex algebra \mathcal{A} , we denote its centre by $Z(\mathcal{A})$ and its group of invertible elements by \mathcal{A}^{\times} .

Let ρ be a quasi-order on [n]. A map $g: \rho \to \mathbb{C}^{\times}$ is called **transitive** if

$$g(i,j)g(j,k) = g(i,k), \text{ for all } (i,j), (j,k) \in \rho.$$

A transitive map $g: \rho \to \mathbb{C}^{\times}$ is said to be **trivial** if there exists a map $s: [n] \to \mathbb{C}^{\times}$ such that

$$g(i,j) = \frac{s(i)}{s(j)}, \text{ for all } (i,j) \in \rho.$$

Every transitive map g induces an algebra automorphism g^* of \mathcal{A}_ρ , defined on the matrix units by

$$g^*(E_{ij}) = g(i,j)E_{ij}$$
, for all $(i,j) \in \rho$.

It is easy to see that the trivial transitive maps correspond to inner automorphisms of SMAs, via the assignment $g \mapsto g^*$.

The structure of the automorphism group of SMAs was completely described by Coelho in 1993.

More recently, we extended Coelho's classification to all Jordan automorphisms of SMAs $\mathcal{A}_{\rho} \subseteq \mathcal{M}_{n}$, as well as to all Jordan monomorphisms $\phi: \mathcal{A}_{\rho} \to \mathcal{M}_{n}$. In fact:

Theorem (G.-Tomašević, 2025, LAA)

Let $\mathcal{A}_{\rho}\subseteq\mathcal{M}_{n}$ be an SMA and let $\phi:\mathcal{A}_{\rho}\to\mathcal{M}_{n}$ be a Jordan homomorphism such that $\phi(E_{ij})\neq0$ for all $(i,j)\in\rho$. Then there exists an invertible matrix $S\in\mathcal{M}_{n}$, a central idempotent $P\in Z(\mathcal{A}_{\rho})$, and a transitive map $g:\rho\to\mathbb{C}^{\times}$ such that

$$\phi(X) = S(Pg^*(X) + (I - P)g^*(X)^t)S^{-1}.$$

In particular, ϕ is injective (i.e. a Jordan monomorphism).

In contrast to the cases of \mathcal{M}_n and \mathcal{T}_n , Jordan automorphisms of SMAs are not necessarily multiplicative or antimultiplicative.

Example

Let n=p+q for some $p,q\in\mathbb{Z}_{\geq 2}$. Consider the algebra $\mathcal{A}:=\mathcal{M}_p\oplus\mathcal{M}_q$, which can be naturally identified with an SMA inside \mathcal{M}_n . Then the map

$$\phi: \mathcal{A} \to \mathcal{A}, \qquad \phi(X, Y) := (X, Y^t)$$

defines a Jordan automorphism of ${\mathcal A}$ that is neither multiplicative nor antimultiplicative.

Corollary

Let $A_{\rho} \subseteq \mathcal{M}_n$ be an SMA. The following conditions are equivalent:

- (a) Every Jordan monomorphism $\phi: \mathcal{A}_{\rho} \to \mathcal{M}_{n}$ is multiplicative or antimultiplicative.
- **1** \mathcal{A}_{ρ} cannot be decomposed as a direct sum of two noncommutative subalgebras.

Likewise, (Jordan) automorphisms of SMAs generally do not preserve rank.

Example

Consider the quasi-order

$$\rho = \{(1,1), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (4,4)\},\$$

and define a transitive map

$$g:
ho o \mathbb{C}^ imes, \qquad g(i,j):=egin{cases} 2, & ext{if } (i,j)=(1,4), \ 1, & ext{otherwise}. \end{cases}$$

Then the induced algebra automorphism $g^*: \mathcal{A}_{\rho} \to \mathcal{A}_{\rho}$,

$$g^* \begin{pmatrix} \begin{bmatrix} x_{11} & 0 & x_{13} & x_{14} \\ 0 & x_{22} & x_{23} & x_{24} \\ 0 & 0 & x_{33} & 0 \\ 0 & 0 & 0 & x_{44} \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_{11} & 0 & x_{13} & 2x_{14} \\ 0 & x_{22} & x_{23} & x_{24} \\ 0 & 0 & x_{33} & 0 \\ 0 & 0 & 0 & x_{44} \end{bmatrix},$$

does not preserve rank-one matrices.

The following results link Jordan homomorphisms with rank-one and rank-preserving maps on an SMA $\mathcal{A}_{\rho}\subseteq\mathcal{M}_{n}$.

Theorem (G.-Tomašević, 2025, LAA)

For a linear map unital $\phi: \mathcal{A}_{\rho} \to \mathcal{M}_{n}$, the following is equivalent:

- **1** ϕ is a rank-one preserver.
- ϕ is a Jordan monomorphism, and the associated transitive map $g: \rho \to \mathbb{C}^{\times}$ satisfies

$$\begin{vmatrix} g(i,j) & g(i,l) \\ g(k,j) & g(k,l) \end{vmatrix} = 0$$

for every rectangle (i,j),(i,l),(k,j),(k,l) in ρ .

Theorem (G.-Tomašević, 2025, LAA)

A linear unital map $\phi: \mathcal{A}_{\rho} \to \mathcal{M}_{n}$ is a rank preserver if and only if there exists an invertible matrix $S \in GL(n)$ and a central idempotent $P \in Z(\mathcal{A})$ such that

$$\phi(X) = S(P(X) + (I - P)X^{t})S^{-1}.$$

Šemrl-type theorem for SMAs

Given a quasi-order ρ on [n], for a fixed $i \in [n]$ denote

$$\rho(i) := \{ j \in [n] : (i,j) \in \rho \}, \qquad \rho^{-1}(i) := \{ j \in [n] : (j,i) \in \rho \}.$$

Theorem (G.-Tomašević, JMAA, 2025)

For an SMA $A_{\rho} \subseteq \mathcal{M}_n$ the following conditions are equivalent:

1 For each $(i,j) \in \rho$, $i \neq j$, we have

$$|(\rho(i) \cup \rho^{-1}(i)) \cap (\rho(j) \cup \rho^{-1}(j))| \ge 3.$$

- **©** Every injective continuous map $\phi: \mathcal{A}_{\rho} \to \mathcal{M}_{n}$ that preserves both spectrum and commutativity is a Jordan homomorphism.
- **(9)** Every injective continuous map $\phi: \mathcal{A}_{\rho} \to \mathcal{A}_{\rho}$ that preserves commutativity and is spectrum-shrinking is a Jordan automorphism.

Remark

For any $(i,j) \in \rho$, $i \neq j$, we have $i,j \in (\rho(i) \cup \rho^{-1}(i)) \cap (\rho(j) \cup \rho^{-1}(j))$.

Discussion of the (i,j)-condition in the theorem

Assume that for some $(i,j) \in \rho$, $i \neq j$, we have

$$(\rho(i) \cup \rho^{-1}(i)) \cap (\rho(j) \cup \rho^{-1}(j)) = \{i, j\}.$$

We distingush two cases.

Example: the case $(j, i) \in \rho$

Then \mathcal{A}_{ρ} contains a direct summand \mathcal{B} isomorphic to \mathcal{M}_{2} .

Let $f:[0,+\infty) o \mathbb{S}^1$ be a non-constant continuous map such that

$$\lim_{t\to+\infty}f(t)=1$$
 (e.g. $f(t):=e^{\frac{t}{t+1}}$). Then $\psi:\mathcal{M}_2\to\mathcal{M}_2$,

$$\psi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) := \begin{cases} \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}, & \text{if } b = 0, \\ \\ \begin{bmatrix} a & b \, f\left(\left|\frac{c}{b}\right|\right) \\ c \, \overline{f\left(\left|\frac{c}{b}\right|\right)} & d \end{bmatrix}, & \text{otherwise,} \end{cases}$$

defines an injective continuous map that preserves both spectrum and commutativity, but is not linear.

Example: the case $(j, i) \notin \rho$

Consider the SMA

$$\mathcal{A}_{
ho} := egin{bmatrix} * & * & * \ 0 & * & 0 \ 0 & 0 & * \end{bmatrix} \subset \mathcal{M}_3.$$

Then the (i,j)-condition fails for (i,j)=(1,2). Define a map

$$f: \mathbb{C} \times \mathbb{C} \to \mathbb{C}, \qquad f(u, v) := \begin{cases} v, & \text{if } |u| \leq |v|, \\ v \left| \frac{v}{u} \right|, & \text{if } |u| > |w|, \end{cases}$$

which is continuous and homogeneous. Then

$$\phi: \mathcal{A}_{
ho} o \mathcal{A}_{
ho}, \qquad \phi \left(egin{bmatrix} lpha & x & y \ 0 & eta & 0 \ 0 & 0 & \gamma \end{bmatrix}
ight) := egin{bmatrix} lpha & f(eta - lpha, x) & y \ 0 & eta & 0 \ 0 & 0 & \gamma \end{bmatrix}$$

defines an injective continuous map that preserves both spectrum and commutativity, but is not linear.

Šemrl-type theorem for singular matrices

First recall the notation. For $n \in \mathbb{Z}_{\geq 2}$ and $1 \leq k \leq n$,

$$\mathcal{M}_n^{\leq k} = \{ \text{all } n \times n \text{ matrices of rank } \leq k \}.$$

Clearly, the linear span of $\mathcal{M}_n^{\leq k}$ is the entire algebra \mathcal{M}_n . In particular, we have $[\mathcal{M}_n^{\leq k}]_{\mathrm{alg}} = \mathcal{M}_n$.

Theorem (Chirvasitu-G.-Tomašević, LAA, 2025)

Let $n \geq 3$ and $1 \leq k < n$. Any injective continuous commutativity-preserving and spectrum-shrinking map $\phi: \mathcal{M}_n^{\leq k} \to \mathcal{M}_n^{\leq k}$ extends to a Jordan homomorphism (hence automorphism) of \mathcal{M}_n .

Remark

In contrast to the previously discussed results, the injectivity condition above is *indispensable*, as demonstrated by maps $\phi: \mathcal{M}_n^{\leq k} \to \mathcal{M}_n^{\leq k}$ of the form $\phi(X) = f(X)N$, where N is a fixed nilpotent matrix in $\mathcal{M}_n^{\leq k}$ and $f: \mathcal{M}_n^{\leq k} \to \mathbb{C}$ is an arbitrary continuous function.

Let k = n - 1, which corresponds to the set Sing(n).

Leveraging the fact that any injective continuous spectrum-shrinking map $\phi: \operatorname{Sing}(n) \to \mathcal{M}_n$ is automatically spectrum-preserving, so that in particular $\phi(\operatorname{Sing}(n)) \subseteq \operatorname{Sing}(n)$, we obtain the following stronger variant of the theorem, when ϕ takes values in \mathcal{M}_n :

Corollary

If $n \geq 3$, any injective continuous commutativity-preserving and spectrum-shrinking map $\phi : Sing(n) \to \mathcal{M}_n$ extends to a Jordan automorphism of \mathcal{M}_n .

When k = 1, our result cannot be extended to maps with values in \mathcal{M}_n :

Example

The map $\phi: \mathcal{M}_n^{\leq 1} \to \mathcal{M}_n$, defined by $\phi(X) := \operatorname{Tr}(X)I_n - X$, is continuous and injective, preserving both spectrum and commutativity. However, it does not extend to a Jordan automorphism of \mathcal{M}_n .

For $2 \le k \le n-2$, it remains unclear whether the singular variant of Šemrl's preserver theorem extends for maps $\phi: \mathcal{M}_n^{\le k} \to \mathcal{M}_n$, even if $k > n - \sqrt{n}$.

Šemrl-type theorem for other matrix domains

Let \mathcal{X} be any of the matrix Lie groups GL(n), SL(n), or U(n), or the space of normal matrices N_n .

Again, the linear span of \mathcal{X} in \mathcal{M}_n is the entire algebra \mathcal{M}_n , so that $[\mathcal{X}]_{\mathrm{alg}} = \mathcal{M}_n$.

Theorem (Chirvasitu-G.-Tomašević, preprint, 2025)

If $X \in \{GL(n), SL(n), U(n), N_n\}$ or consists of the diagonalizable matrices in either GL(n) or SL(n), then any continuous, commutativity-preserving and spectrum-shrinking map extends to a Jordan automorphism of \mathcal{M}_n .

Remark

Our proof of the semisimple branch does not rely on Šemrl's preserver characterization of Jordan automorphisms of \mathcal{M}_n . In fact, a simple continuity argument recovers Šemrl's theorem.

Remark

In contrast to previous cases, the techniques used to prove the above result involve minimal direct computation. They are:

- partly algebraic/geometric (heavily dependent on the Fundamental Theorem of Projective Geometry),
- partly reliant on the topology of the matrix spaces involved,
- and partly operator-theoretic. In particular, during the analysis, we encounter a qualitatively new candidate map:

$$SNS^{-1} \mapsto S^{-1}NS$$
, \forall normal $N \in N_n$ and positive $S \in GL(n)$.

To show that it satisfies all requirements except continuity, we make crucial use of the celebrated *Putnam-Fuglede theorem*.

Thank you for your attention!