The Dixmier property and weak centrality for C*-algebras

Ilja Gogić

Dpt. of Mathematics, University of Zagreb

8th Croatian Mathematical Congress Osijek, July 2-5, 2024

based on a joint work with Robert J. Archbold and Leonel Robert

Ilja Gogić (University of Zagreb)

C^* -algebras - definition and basic properties

C^* -algebra

A C*-algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra with identity over the field \mathbb{C} .
- A is equipped with an involution, i.e. a map $*: A \rightarrow A$, $a \mapsto a^*$ satisfying the properties:

$$(lpha a + eta b)^* = \overline{lpha} a^* + \overline{eta} b^*, \hspace{1em} (ab)^* = b^* a^*, \hspace{1em} ext{and} \hspace{1em} (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

Norm || · || satisfies the C*-identity, i.e.

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

C*-algebraic formulation of Quantum Mechanics

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.
- A state of the system is defined as a positive unital linear functional on A – if the system is in the state ω , then $\omega(a)$ is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups {Φ_t}_{t∈ℝ} describe the reversible time evolution of the system (in the Heisenberg picture).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C*-algebraic formulation of Quantum Mechanics

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.
- A state of the system is defined as a positive unital linear functional on A – if the system is in the state ω, then ω(a) is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups {Φ_t}_{t∈ℝ} describe the reversible time evolution of the system (in the Heisenberg picture).

Since the 1960s C^* -algebras serve as a natural mathematical framework for the quantum field theory.

イロト 不得 トイヨト イヨト 二日

The C^{*}-identity is a very strong requirement. For instance, for any $a \in A$ let $\sigma(a)$ denote the spectrum of a, i.e.

$$\sigma(a) := \{\lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible in } A\}.$$

Then the C^* -identity combined with the spectral radius formula

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}},$$

implies that the C^* -norm is uniquely determined by the algebraic structure:

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \max\{|\lambda|: \lambda \in \sigma(a^*a)\}.$$

The C^{*}-identity is a very strong requirement. For instance, for any $a \in A$ let $\sigma(a)$ denote the spectrum of a, i.e.

$$\sigma(a) := \{\lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible in } A\}.$$

Then the C^* -identity combined with the spectral radius formula

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}},$$

implies that the C^* -norm is uniquely determined by the algebraic structure:

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \max\{|\lambda| : \lambda \in \sigma(a^*a)\}.$$

In the category of C^* -algebras, the natural candidates for morphisms are the *-homomorphisms, i.e. the algebra homomorphisms which which preserve the involution. Basic properties:

- they are automatically contractive (isometric if injective), and
- their image is a C^* -subalgebra of the codomain C^* -algebra.

Basic examples

- To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.
- The set B(*H*) of bounded linear operators on a Hilbert space *H* becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n(C) are C*-algebras. In fact, the finite direct sums of matrix algebras over C make up all finite-dimensional C*-algebras.
- To any locally compact group G, one can associate a C^* -algebra $C^*(G)$. Everything about the representation theory of G is encoded in $C^*(G)$.
- The category of C*-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (C*-)tensor products, etc.

3

イロト イポト イヨト イヨト

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^* -algebras (with non-degenerate *-homomorphisms as morphisms).

(人間) トイヨト イヨト 三日

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^* -algebras (with non-degenerate *-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra $C_0(X)$, no information is lost. In fact, X can be recovered from $C_0(X)$. Thus, topological properties of X can be translated into algebraic properties of $C_0(X)$, and vice versa. Therefore, the theory of C^* -algebras is often thought of as **noncommutative topology**.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Representations of C*-algebras

A **representation** of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Representations of C*-algebras

A **representation** of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Theorem (General Gelfand-Naimark theorem, 1943)

Any C*-algebra admits an injective (hence isometric) representation on some Hilbert space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representations of C*-algebras

A **representation** of a C^* -algebra A is a *-homomorphism $\pi : A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial (closed) invariant subspaces (i.e. if \mathcal{K} is a (closed) subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Theorem (General Gelfand-Naimark theorem, 1943)

Any C^{*}-algebra admits an injective (hence isometric) representation on some Hilbert space.

Because of the previous theorem, C^* -algebras can be concretely defined to be norm closed self-adjoint subalgebras of bounded operators on some Hilbert space \mathcal{H} .

イロト 不得下 イヨト イヨト 二日

The primitive spectrum of a C*-algebra

Let A be C^* -algebra.

- A **primitive ideal** of *A* is an ideal which is the kernel of an irreducible representation of *A*.
- The **primitive spectrum** of A is the set Prim(A) of primitive ideals of A equipped with the **Jacobson** (**hull-kernel**) **topology**: if S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : \ker S = \bigcap_{Q \in S} Q \subseteq P \right\}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The primitive spectrum of a C*-algebra

Let A be C^* -algebra.

- A **primitive ideal** of *A* is an ideal which is the kernel of an irreducible representation of *A*.
- The **primitive spectrum** of A is the set Prim(A) of primitive ideals of A equipped with the **Jacobson** (**hull-kernel**) **topology**: if S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : \ker S = \bigcap_{Q \in S} Q \subseteq P \right\}.$$

Example - commutative case

If $A = C_0(X)$ and $x \in X$, let $P_x := \{f \in C_0(X) : f(x) = 0\}$. Then $Prim(C_0(X)) = \{P_x : x \in X\}$. Moreover, the correspondence $x \mapsto P_x$ defines a homeomorphism between X and $Prim(C_0(X))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of Prim(*A*)

- Prim(A) is always a locally compact and is compact if A is unital.
- If A is separable, Prim(A) is second countable.
- However, as a topological space, Prim(A) is in general badly behaved and may satisfy only the T₀-separation axiom (e.g. if H is a separable infinite dimensional Hilbert space, then Prim(B(H))={0, K(H)}, so that {0} is not closed in Prim(B(H)).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Properties of Prim(*A*)

- Prim(A) is always a locally compact and is compact if A is unital.
- If A is separable, Prim(A) is second countable.
- However, as a topological space, Prim(A) is in general badly behaved and may satisfy only the T₀-separation axiom (e.g. if H is a separable infinite dimensional Hilbert space, then Prim(B(H))={0, K(H)}, so that {0} is not closed in Prim(B(H)).

When a C^* -algebra A is unital, the Jacobson topology on Prim(A) not only describes the ideal structure of A, but also allows us to completely describe its centre $Z(A) = \{z \in A : za = az\}$:

Dauns-Hofmann theorem, 1968

Let A be a unital C*-algebra. Then there is a *-isomorphism $\Psi_A: Z(A) \to C(\operatorname{Prim}(A))$ such that

$$z + P = \Psi_A(z)(P)1 + P$$

for all $f \in C(\operatorname{Prim}(A))$, $a \in A$ and $P \in \operatorname{Prim}(A)$.

The Dixmier property and weak centrality

Preliminaries

- Throughout A will be a C*-algebra with centre Z(A) and unitary group U(A) = {u ∈ A : u*u = uu* = 1} (if A is unital).
- By an ideal of A we always mean a closed two-sided ideal. We denote by Ideal(A) the set of all (closed two-sided) ideals of A.
- By S(A) we denote the set of all states on A (i.e. positive linear functionals ω : A → C of norm 1) equipped with the relative w*-topology.
- A state $\tau \in \mathcal{S}(A)$ is said to be **tracial** if $\tau(xy) = \tau(yx) \ \forall x, y \in A$.
- By T(A) we denote the set of all tracial states on A. If A is unital then T(A) is a convex w*-compact subset of S(A).
- By ∂_eT(A) we denote the extreme boundary of T(A), so that T(A) is equal to the closed convex hull of ∂_eT(A) (by the Krein-Milman theorem).

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• A unitary mixing operator on A is a map $\phi: A \rightarrow A$ of the form

$$\phi(x) = \sum_{i=1}^n t_i u_i^* x u_i,$$

where *n* is a positive integer, $u_1, \ldots, u_n \in \mathcal{U}(\mathcal{A})$ and t_1, \ldots, t_n non-negative real numbers such that $t_1 + \ldots + t_n = 1$. The set of all such maps is denoted by $UM(\mathcal{A})$.

The Dixmer property and weak centrality

Let A be a unital C^* -algebra.

For an element a ∈ A the Dixmier set D_A(a) is defined as the norm-closure of the set {φ(a) : φ ∈ UM(A)} (i.e.the closed convex hull of the unitary orbit of a). Then A is said to have the Dixmier property (DP) if

$$D_A(a) \cap Z(A) \neq \emptyset \qquad \forall a \in A.$$

• A is said to be weakly central (WC) if for any pair of maximal ideals M_1 and M_2 of A, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.

Important properties

- DP \implies WC (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, WC ≠> DP.

(4個) (4回) (4回) (日)

Important properties

- DP \implies WC (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, WC ≠> DP.
- A complete characterization of C^* -algebras with DP was obtained recently.
- Theorem (Archbold-Robert-Tikuisis, JFA 2017)
- A unital C*-algebra A has DP iff all of the following hold:
 - A is WC.
 - Every simple quotient of A has at most one tracial state.
 - Every extreme tracial state of A factors trough some simple quotient.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Important properties

- DP \implies WC (Archbold 1972).
- All von Neumann algebras satisfy DP (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies DP iff it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, WC ≠> DP.

A complete characterization of C^* -algebras with DP was obtained recently.

Theorem (Archbold-Robert-Tikuisis, JFA 2017)

- A unital C*-algebra A has DP iff all of the following hold:
 - A is WC.
 - Every simple quotient of A has at most one tracial state.
 - Every extreme tracial state of A factors trough some simple quotient.

Corollary

A unital postliminal C*-algebra has DP iff it is WC.

イロト 不得下 イヨト イヨト 二日

Corollary

For a unutal C*-algebra A the following conditions are equivalent:

- $Z(A) = \mathbb{C}1$ and A has DP.
- A has a unique maximal ideal M, A (or A/M) has at most one tracial state and M has no tracial states.

3

<日

<</p>

Corollary

For a unutal C^* -algebra A the following conditions are equivalent:

- $Z(A) = \mathbb{C}1$ and A has DP.
- A has a unique maximal ideal M, A (or A/M) has at most one tracial state and M has no tracial states.

The Dixmier's example

Let \mathcal{H} be a separable infinite-dimensional Hilbert space and let $p \in B(\mathcal{H})$ be any projection with infinite-dimensional kernel and image. Set

$$A := \mathrm{K}(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset \mathrm{B}(\mathcal{H}).$$

Then $Z(A) = \mathbb{C}1$, A has precisely two maximal ideals, namely

$$M_1 := \mathrm{K}(\mathcal{H}) + \mathbb{C}p$$
 and $M_2 := \mathrm{K}(\mathcal{H}) + \mathbb{C}(1-p),$

and obviously $M_1 \cap Z(A) = M_2 \cap Z(A) = \emptyset$. Hence, A is not WC.

イロト 不得下 イヨト イヨト 二日

In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging which are defined as follows.

EUCP operators and Magajna set

By an elementary unital completely positive operator on a unital C*-algebra A we mean a map φ : A → A of the form

$$\phi(x) = \sum_{i=1}^n a_i^* x a_i,$$

where $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$ such that $\sum_{i=1}^n a_i^* a_i = 1$. The set of all such maps on A is denoted by EUCP(A).

For a ∈ A we define the Magajna set M_A(a) as the norm-closure of the set {φ(a) : φ ∈ EUCP(A)} (i.e. the closed C*-convex hull of a). Obviously D_A(a) ⊆ M_A(a) for any a ∈ A

In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging which are defined as follows.

EUCP operators and Magajna set

By an elementary unital completely positive operator on a unital C*-algebra A we mean a map φ : A → A of the form

$$\phi(x) = \sum_{i=1}^n a_i^* x a_i,$$

where $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$ such that $\sum_{i=1}^n a_i^* a_i = 1$. The set of all such maps on A is denoted by EUCP(A).

For a ∈ A we define the Magajna set M_A(a) as the norm-closure of the set {φ(a) : φ ∈ EUCP(A)} (i.e. the closed C*-convex hull of a). Obviously D_A(a) ⊆ M_A(a) for any a ∈ A

Theorem (Magajna, JMAA 2008)

A unital C*-algebra A is WC if and only if $M_A(a) \cap Z(A) \neq \emptyset$ for all $a \in A$.

The centre-quotient property

• If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A)+J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

The centre-quotient property

• If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A)+J)/J = q_J(Z(A)) \subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

 A is said to have the centre-quotient property (CQP) if the equality holds above for any J ∈ Ideal(A).

The centre-quotient property

• If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A)+J)/J=q_J(Z(A))\subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

 A is said to have the centre-quotient property (CQP) if the equality holds above for any J ∈ Ideal(A).

Theorem (Vesterstrøm, Math. Scand. 1971)

A unital C*-algebra is WC iff it has CQP.

The centre-quotient property

• If $J \in \text{Ideal}(A)$ it is immediate that

$$(Z(A)+J)/J=q_J(Z(A))\subseteq Z(A/J),$$

where $q_J : A \rightarrow A/J$ is the canonical map.

 A is said to have the centre-quotient property (CQP) if the equality holds above for any J ∈ Ideal(A).

Theorem (Vesterstrøm, Math. Scand. 1971)

A unital C*-algebra is WC iff it has CQP.

Example

If $A = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H})$ is the Dixmier C^* -algebra, then $Z(A) = \mathbb{C}1$, while $Z(A/K(\mathcal{H})) = A/K(\mathcal{H}) \cong \mathbb{C} \oplus \mathbb{C}$.

3

イロト イポト イヨト イヨト

Global apporach

Show that any C*-algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

- 31

- 4 回 ト 4 三 ト 4 三 ト

Global apporach

Show that any C*-algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

Local apporach

Consider individual elements of A which witness DP and WC/CQP. We define an element $a \in A$ to be:

- a **Dixmier element** if $D_A(a) \cap Z(A) \neq \emptyset$;
- a Magajna element if $M_A(a) \cap Z(A) \neq \emptyset$;
- a **CQ-element** if for any ideal J of A, $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Global apporach

Show that any C*-algebra A has the largest WC ideal $J_{wc}(A)$ and the largest ideal $J_{dp}(A)$ with DP, and obtain their concrete descriptions.

Local apporach

Consider individual elements of A which witness DP and WC/CQP. We define an element $a \in A$ to be:

- a **Dixmier element** if $D_A(a) \cap Z(A) \neq \emptyset$;
- a Magajna element if $M_A(a) \cap Z(A) \neq \emptyset$;
- a **CQ-element** if for any ideal *J* of *A*, $a + J \in Z(A/J)$ implies $a \in Z(A) + J$.

By Dix(A), Mag(A) and CQ(A) we respectively denote the sets of all Dixmier, Magajna and CQ-elements of A. Obviously A has DP iff Dix(A) = A, while A is WC/has CQP iff Mag(A) = CQ(A) = A.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Global approach

We begin by extending the definition of WC and DP for non-unital C^* -algebras in the obvious way: We say that a non-unital C^* -algebra A is WC/has DP if its minimal unitization $A^{\sharp} = A \oplus \mathbb{C}1$ has the same property.

э

Global approach

We begin by extending the definition of WC and DP for non-unital C^* -algebras in the obvious way: We say that a non-unital C^* -algebra A is WC/has DP if its minimal unitization $A^{\sharp} = A \oplus \mathbb{C}1$ has the same property.

Modular maximal ideals

- An ideal J of A is said to be **modular** if the algebra A/J is unital.
- Any proper modular ideal of A (if such exists) is contained in some modular maximal ideal of A and all modular maximal ideals of A are primitive. By Max(A) we denote the set of all modular maximal ideals of A, so that Max(A) ⊆ Prim(A).
- Max(A) can be empty (e.g. the algebra A = K(H) of compact operators on a separable infinite-dimensional Hilbert space H).
- If A is unital, both spaces Prim(A) and Max(A) are compact.
- For any J ∈ Ideal(A) we define Max^J(A) for the set of all modular maximal ideals of A that contain J. The space Max^J(A) is canonically homeomorphic to Max(A/J) via the assignment M → M/J.

э

For any C*-algebra A the following conditions are equivalent:

• A is WC.

- No modular maximal ideal of A contains Z(A) and for all $M_1, M_2 \in Max(A), M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C*-algebras is closed under forming ideals, quotients, direct sums and C*-tensor product. Moreover if A_1 and A_2 are C*-algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C*-norm β if and only if both A_1 and A_2 are WC.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any C*-algebra A the following conditions are equivalent:

• A is WC.

- No modular maximal ideal of A contains Z(A) and for all $M_1, M_2 \in Max(A), M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C*-algebras is closed under forming ideals, quotients, direct sums and C*-tensor product. Moreover if A_1 and A_2 are C*-algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C*-norm β if and only if both A_1 and A_2 are WC.

It is possible to show that every C^* -algebra contains a largest ideal with CQP by using Zorn's lemma and the fact that the sum of two ideals with CQP has CQP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any C^{*}-algebra A the following conditions are equivalent:

• A is WC.

- No modular maximal ideal of A contains Z(A) and for all $M_1, M_2 \in Max(A), M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.
- A has CQP.

Further, the class of WC C^{*}-algebras is closed under forming ideals, quotients, direct sums and C^{*}-tensor product. Moreover if A_1 and A_2 are C^{*}-algebras then $A_1 \otimes_{\beta} A_2$ is WC for some/every C^{*}-norm β if and only if both A_1 and A_2 are WC.

It is possible to show that every C^* -algebra contains a largest ideal with CQP by using Zorn's lemma and the fact that the sum of two ideals with CQP has CQP.

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A.

Let A be a C^{*}-algebra and T_A the set of all $M \in Max(A)$ such that either

- $Z(A) \subseteq M$, or
- there is $N \in Max(A)$ such that $M \neq N$, $Z(A) \nsubseteq M$, N and $M \cap Z(A) = N \cap Z(A)$.

Then $J_{wc}(A) := \ker T_A$ is the largest weakly central ideal of A.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let A be a C^{*}-algebra and T_A the set of all $M \in Max(A)$ such that either

- $Z(A) \subseteq M$, or
- there is $N \in Max(A)$ such that $M \neq N$, $Z(A) \nsubseteq M$, N and $M \cap Z(A) = N \cap Z(A)$.

Then $J_{wc}(A) := \ker T_A$ is the largest weakly central ideal of A.

Example

- If $A = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H})$ is the Dixmier's example, then $J_{wc}(A) = (K(\mathcal{H}) + \mathbb{C}p) \cap (K(\mathcal{H}) + \mathbb{C}(1-p)) = K(\mathcal{H}).$
- If G is either the free group on two generators \mathbb{F}_2 or the discrete three-dimensional Heisenberg group

$$H_3 = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\},$$

then for $A = C^*(G)$ we have $J_{wc}(A) = \{0\}$.

By using Zorn's lemma, in 1972 Archbold showed that any unital C^* -algebra A contains the largest ideal $J_{dp}(A)$ with DP. We now describe $J_{dp}(A)$ more explicitly. But first we recall the notion of Glimm ideals.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

By using Zorn's lemma, in 1972 Archbold showed that any unital C^* -algebra A contains the largest ideal $J_{dp}(A)$ with DP. We now describe $J_{dp}(A)$ more explicitly. But first we recall the notion of Glimm ideals.

Glimm ideals in unital C^* -algebras

- For all $P, Q \in Prim(A)$ we define $P \approx Q$ if $P \cap Z(A) = Q \cap Z(A)$.
- Let $\Psi_A : Z(A) \to C(\operatorname{Prim}(A))$ be the Dauns-Hofmann isomorphism, so that $z + P = \Psi_A(z)(P)1 + P$ for all $z \in Z(A)$ and $P \in \operatorname{Prim}(A)$. Then for all $P, Q \in \operatorname{Prim}(A)$,

$$P \approx Q \qquad \Longleftrightarrow \qquad f(P) = f(Q) \quad \text{for all } f \in C(\operatorname{Prim}(A)).$$

 ≈ is an equivalence relation on Prim(A) and the equivalence classes are closed subsets of Prim(A) and there is is one-to-one correspondence between the quotient set Prim(A)/ ≈ and a set of ideals of A given by

$$[P]_{\approx} \longleftrightarrow \bigcap [P]_{\approx},$$

where $[P]_{\approx}$ denotes the equivalence class of $P \in Prim(A)$.

Glimm ideals in unital C*-algebras (continuation)

- The set of ideals obtained in this way is denoted by Glimm(A), and its elements are called **Glimm ideals** of A.
- The quotient map Prim(A) → Glimm(A) given by P → ∩[P]_≈ is known as the complete regularization map.
- We equip Glimm(A) with the quotient topology, which (since A is unital) coincides with the complete regularization topology. In this way Glimm(A) becomes a compact Hausdorff space.
- In fact, Glimm(A) is homeomorphic to Max(Z(A)) via the assignment Glimm(A) ∋ N → N ∩ Z(A) ∈ Max(Z(A)), whose inverse is given by Max(Z(A)) ∋ J → JA ∈ Glimm(A) (the closures are not needed by the Hewitt-Cohen factorization theorem).
- For z ∈ A we write ẑ for the corresponding function in C(Glimm(A)), so that the assignment Z(A) ∋ z → ẑ ∈ C(Glimm(A)) is an isomorphism such that

$$z + N = \hat{z}(N)1 + N \quad \forall z \in Z(A), \ N \in \operatorname{Glimm}(A).$$

- Now consider the set $X \subseteq \text{Glimm}(A)$ of Glimm ideals N such that A/N has DP and a trivial centre.
- This is equivalent to saying that N is contained in a unique maximal ideal M_N of A, that A/N has at most one tracial state and that if A/N does have a tracial state then it factors through A/M_N .
- For $N \in \operatorname{Glimm}(A) \setminus X$ define

$$I_N := \ker\{M: M \in \operatorname{Max}^N(A)\} \cap \ker\{I_\tau : \tau \in \mathcal{T}(A/N)\}$$

where, for $au \in \mathcal{T}(A/N)$,

$$I_{\tau}:=\{a\in A:\ \tau(a^*a+N)=0\}.$$

- Now consider the set $X \subseteq \text{Glimm}(A)$ of Glimm ideals N such that A/N has DP and a trivial centre.
- This is equivalent to saying that N is contained in a unique maximal ideal M_N of A, that A/N has at most one tracial state and that if A/N does have a tracial state then it factors through A/M_N .
- For $N \in \operatorname{Glimm}(A) \setminus X$ define

$$I_N := \ker\{M : M \in \operatorname{Max}^N(A)\} \cap \ker\{I_\tau : \tau \in \mathcal{T}(A/N)\}$$

where, for $au \in \mathcal{T}(A/N)$,

$$I_{\tau}:=\{a\in A:\ \tau(a^*a+N)=0\}.$$

Theorem (Archbold-G-Robert, IMRN 2023)

We have

$$J_{dp}(A) = \ker\{I_N : N \in \operatorname{Glimm}(A) \setminus X\}.$$

Local approach

Recall, if $a \in A$ then:

- $a \in \text{Dix}(A)$ if $D_A(A) \cap Z(A) \neq \emptyset$
- $a \in Mag(A)$ if $M_A(A) \cap Z(A) \neq \emptyset$.
- a ∈ CQ(A) if for any ideal J of A, a + J ∈ Z(A/J) implies a ∈ Z(A) + J.

- 31

・ 同 ト ・ ヨ ト ・ ヨ ト

Local approach

Recall, if $a \in A$ then:

- $a \in \text{Dix}(A)$ if $D_A(A) \cap Z(A) \neq \emptyset$
- $a \in Mag(A)$ if $M_A(A) \cap Z(A) \neq \emptyset$.
- a ∈ CQ(A) if for any ideal J of A, a + J ∈ Z(A/J) implies a ∈ Z(A) + J.

We always have

$$\operatorname{Dix}(A) \subseteq \operatorname{Mag}(A) \subseteq \operatorname{CQ}(A).$$

- Dix(A) always contains $Z(A) + J_{dp}(A)$, all self-commutators $[a^*, a]$ $(a \in A)$ and all quasinilpotents. In particular, Dix(A) = Z(A) iff A is abelian.
- Mag(A) always contains $Z(A) + J_{wc}(A)$ and all products *ab* where *a* or *b* is quasinilpotent.
- CQ(A) always contains all commutators [a, b] $(a, b \in A)$. There are C^* -algebras A such that $[a, b] \notin Mag(A)$ for some $a, b \in A$.

We always have

$$\overline{\operatorname{span}(\operatorname{Mag}(A))} = \overline{\operatorname{span}(\operatorname{CQ}(A))} = Z(A) + \operatorname{Ideal}([A, A]).$$

On the other hand, when sets CQ(A) and Mag(A) coincide, A is not far from being WC. On the other hand, when this fails, both sets dramatically fail to be C^* -subalgebras of A:

Theorem (Archbold-G & Archbold-G-Robert, IMRN 2022 & 2023)

The following conditions are equivalent:

• Mag(A) = CQ(A).

•
$$\operatorname{Mag}(A) = \operatorname{CQ}(A) = Z(A) + J_{wc}(A).$$

- $A/J_{wc}(A)$ is abelian.
- Mag(A) and/or CQ(A) is closed under addition.
- Mag(A) and/or CQ(A) is closed under multiplication.
- Mag(A) is closed under EUCP operators.
- CQ(A) is norm-closed.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while CQ(A) is norm-dense in A.

イロト イポト イヨト イヨト 二日

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while CQ(A) is norm-dense in A.

In order to identify the set CQ(A) we shall need the following result:

Theorem (Archbold-G, IMRN 2022)

Let A be a unital C^* -algebra and let J be an ideal of A. A central element \dot{z} of A/I can be lifted to a central element of A iff

$$\Psi_{A/J}(\dot{z})(P_1/J) = \Psi_{A/J}(\dot{z})(P_2/J)$$

for all $P_1, P_2 \in Prim(A)$ that contain J and $P_1 \cap Z(A) = P_2 \cap Z(A)$.

We also exhibited examples of (separable continuous trace) C^* -algebras A for which $J_{wc}(A) = \{0\}$, while CQ(A) is norm-dense in A.

In order to identify the set CQ(A) we shall need the following result:

Theorem (Archbold-G, IMRN 2022)

Let A be a unital C^* -algebra and let J be an ideal of A. A central element \dot{z} of A/I can be lifted to a central element of A iff

$$\Psi_{A/J}(\dot{z})(P_1/J) = \Psi_{A/J}(\dot{z})(P_2/J)$$

for all $P_1, P_2 \in Prim(A)$ that contain J and $P_1 \cap Z(A) = P_2 \cap Z(A)$.

Theorem (Archbold-G, IMRN 2022)

An element $a \in A$ belongs to $A \setminus CQ(A)$ iff one of the following holds:

- there exists M ∈ Max(A) such that Z(A) ⊆ M and a + M is a non-zero scalar in A/M;
- there exist $M_1, M_2 \in Max(A)$ and scalars $\lambda_1 \neq \lambda_2$ such that $Z(A) \neq M_1 \cap Z(A) = M_2 \cap Z(A)$ and $a + M_i = \lambda_i \mathbb{1}_{A/M_i}$ (i = 1, 2).

On the other hand, a complete description of Dix(A) and Mag(A) is in general difficult to obtain. This has led us to also consider the sets

$$\overline{\operatorname{Mag}}(A) = \{ a \in A : \operatorname{dist}(M_A(a), Z(A)) = 0 \},\\ \overline{\operatorname{Dix}}(A) = \{ a \in A : \operatorname{dist}(D_A(a), Z(A)) = 0 \}.$$

These are more tractable sets (e.g. they are norm-closed). We have

Also note that A has DP iff $\overline{\text{Dix}}(A) = A$ and A is WC iff $\overline{\text{Mag}}(A) = A$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in S(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in S(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Theorem (Magajna, Canad. Math. Bull. 2000)

Let $a \in A$. A normal element $b \in A$ belongs to $M_A(a)$ iff $W_{A/P}(b+P) \subseteq W_{A/P}(a+P)$ for each $P \in Prim(A)$.

Numerical range

Given $a \in A$ the **(algebraic) numerical range** of a is defined as $W_A(a) := \{\omega(a) : \omega \in S(A)\}$. It is a compact convex subset of \mathbb{C} that contains $\sigma(a)$. If a is normal then $W_A(a)$ is the convex hull of $\sigma(a)$.

Theorem (Magajna, Canad. Math. Bull. 2000)

Let $a \in A$. A normal element $b \in A$ belongs to $M_A(a)$ iff $W_{A/P}(b+P) \subseteq W_{A/P}(a+P)$ for each $P \in Prim(A)$.

Theorem (Archbold-G-Robert, IMRN 2023)

For any $a \in A$ we have $a \in \overline{Mag}(A)$ iff for all $N \in Glimm(A)$,

$$\Lambda_a(N) := igcap_{M \in \operatorname{Max}^N(A)} W_{A/M}(a+M) \neq \emptyset.$$

Further, if a is selfadjoint, then $a \in \overline{Mag}(A)$ iff $a \in Mag(A)$.

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p)$ be the Dixmier C*-algebra and let $A = C([-1, 1], M_2(\mathbb{C})) \otimes B$. We define elements $a, b \in A$ as:

$$\mathsf{a}(t):=egin{pmatrix} 1 & 0\ 0 & -1 \end{pmatrix}, \quad \mathsf{b}(t):=egin{pmatrix} lpha(t) & 0\ 0 & eta(t) \end{pmatrix},$$

where $\alpha(t)$ and $\beta(t)$ are curves in the plane such that:

- From t = -1 to t = 0 the interval $[\alpha(t), \beta(t)]$ starts at [-1, -1 + 2i], remains pinned at -1 while rotating till it is flat and equal to [-1, 1] at t = 0.
- Then from t = 0 to t = 1 the interval $[\alpha(t), \beta(t)]$ is pinned at 1, and rotates till it stops at [1, 1 + 2i].

If $c \in A$ defined as

$$c := a \otimes p + b \otimes (1 - p),$$

then c is a normal element of A such that $c \in \overline{Mag}(A) \setminus Mag(A)$.

イロト 不得下 イヨト イヨト 二日

We now describe the set $\overline{\text{Dix}}(A)$. Define

$$Y := \{ N \in \operatorname{Glimm}(A) : \mathcal{T}(A/N) \neq \emptyset \}.$$

It is not difficult to se that Y is a closed subset of $\operatorname{Glimm}(A)$.

- ∢ /⊐ >

э

We now describe the set $\overline{\text{Dix}}(A)$. Define

$$Y := \{ N \in \operatorname{Glimm}(A) : \mathcal{T}(A/N) \neq \emptyset \}.$$

It is not difficult to se that Y is a closed subset of $\operatorname{Glimm}(A)$.

Theorem (Archbold-G-Robert, IMRN 2023)

For an element $a \in A$ consider the following conditions:

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p)$ be the Dixmier C*-algebra and $A := C([-1,1], \mathcal{O}_2) \otimes B$ (\mathcal{O}_2 is the Cuntz algebra). Then $\mathcal{T}(A) = \emptyset$, so that Dix(A) = Mag(A) and there is $a \in \overline{Dix(A)} \setminus Dix(A)$.

Example

Let $B = K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p)$ be the Dixmier C*-algebra and $A := C([-1,1], \mathcal{O}_2) \otimes B$ (\mathcal{O}_2 is the Cuntz algebra). Then $\mathcal{T}(A) = \emptyset$, so that Dix(A) = Mag(A) and there is $a \in \overline{Dix(A)} \setminus Dix(A)$.

Theorem (Archbold-G-Robert, IMRN 2023)

The set $Z(A) + \overline{[A, A]}$ contains $\overline{\text{Dix}}(A)$ and is equal to the closed linear span of Dix(A). Further, the following conditions are equivalent:

- (i) $Dix(A) = Z(A) + \overline{[A, A]}$.
- (ii) Dix(A) is closed under unitary mixing operators.
- (iii) Dix(A) is closed under addition.
- (iv) (a) For all $N \in Y$ and $M \in \operatorname{Max}^{N}(A)$, $\mathcal{T}(A/M) \neq \emptyset$.
 - **(b)** For all $N \in \operatorname{Glimm}(A) \setminus Y$, $\operatorname{Max}^{N}(A)$ is a singleton set.

Moreover, when these equivalent conditions hold, $Dix(A) = \overline{Dix}(A)$.

Problem

Is $\overline{\operatorname{Mag}(A)} = \overline{\operatorname{Mag}}(A)$ and $\overline{\operatorname{Dix}(A)} = \overline{\operatorname{Dix}}(A)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem

Is
$$\overline{\operatorname{Mag}(A)} = \overline{\operatorname{Mag}}(A)$$
 and $\overline{\operatorname{Dix}(A)} = \overline{\operatorname{Dix}}(A)$?

Theorem (Archbold-G-Robert, IMRN 2023)

The following conditions are equivalent:

(i)
$$A/J_{dp}(A)$$
 is abelian.

(ii) $Dix(A) = Z(A) + J_{dp}(A)$,

(iii) Dix(A) is closed under multiplication.

Moreover, under these equivalent conditions $J_{dp}(A) = J_{wc}(A)$, so that

$$\operatorname{Dix}(A) = \operatorname{Mag}(A) = Z(A) + J_{dp}(A) = Z(A) + \overline{[A, A]}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >