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C ∗-algebras - definition and basic properties

A C ∗-algebra is a complex Banach ∗-algebra A whose norm ∥ · ∥ satisfies
the C ∗-identity. More precisely:

A is a Banach algebra with identity over the field C.
A is equipped with an involution, i.e. a map ∗ : A → A, a 7→ a∗

satisfying the properties:

(αa+ βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.
Norm ∥ · ∥ satisfies the C ∗-identity, i.e.

∥a∗a∥ = ∥a∥2

for all a ∈ A.
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C ∗-algebraic formulation of Quantum Mechanics

C ∗-algebras are historically associated with the development of QM
through the groundbreaking work of Heisenberg, Jordan and von
Neumann in the late 1920s.

In QM a physical system can be described via a unital C ∗-algebra A.

The self-adjoint elements of A are thought of as the observables – the
measurable quantities of the system.

A state of the system is defined as a positive unital linear functional
on A – if the system is in the state ω, then ω(a) is the expected value
of the observable a.

Automorphisms correspond to the symmetries, while one-parameter
automorphism groups {Φt}t∈R describe the reversible time evolution
of the system (in the Heisenberg picture). Their infinitesimal
generators are the ∗-derivations.

Since the 1960s C ∗-algebras serve as a natural mathematical framework
for the quantum field theory.
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The C ∗-identity is a very strong requirement. For instance, for any a ∈ A
let σ(a) denote the spectrum of a, i.e.

σ(a) := {λ ∈ C : λ1− a is not invertible in A}.

Then the C ∗-identity combined with the spectral radius formula

r(a) := max{|λ| : λ ∈ σ(a)} = lim
n→∞

∥an∥
1
n ,

implies that the C ∗-norm is uniquely determined by the algebraic structure:

∥a∥2 = ∥a∗a∥ = r(a∗a) = max{|λ| : λ ∈ σ(a∗a)}.

In the category of C ∗-algebras, the natural candidates for morphisms are
the ∗-homomorphisms, i.e. the algebra homomorphisms which which
preserve the involution. Basic properties:

they are automatically contractive (isometric if injective), and

their image is a C ∗-subalgebra of the codomain C ∗-algebra.
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Basic examples

To any LCH (locally compact Hausdorff) space one can associate a
commutative C ∗-algebra C0(X ) of all continuous functions f : X → C
that vanish at infinity, with respect to the pointwise operations,
involution f ∗(x) := f (x), and sup-norm ∥f ∥∞ := supx∈X |f (x)|.
The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn(C) are C ∗-algebras.

Any C ∗-algebra can be isometrically embedded as a norm-closed
self-adjoint subalgebra of B(H) for some Hilbert space H (the
noncommutative Gelfand-Naimark theorem).

To any LC group G , one can associate a C ∗-algebra C ∗(G ).
Everything about the representation theory of G is encoded in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(C ∗-)tensor products, etc.
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Ilja Gogić (University of Zagreb) Derivations on C∗-Algebras: A Revisit Bologna, June 13, 2025 5 / 30



Basic examples

To any LCH (locally compact Hausdorff) space one can associate a
commutative C ∗-algebra C0(X ) of all continuous functions f : X → C
that vanish at infinity, with respect to the pointwise operations,
involution f ∗(x) := f (x), and sup-norm ∥f ∥∞ := supx∈X |f (x)|.
The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn(C) are C ∗-algebras.

Any C ∗-algebra can be isometrically embedded as a norm-closed
self-adjoint subalgebra of B(H) for some Hilbert space H (the
noncommutative Gelfand-Naimark theorem).

To any LC group G , one can associate a C ∗-algebra C ∗(G ).
Everything about the representation theory of G is encoded in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(C ∗-)tensor products, etc.
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In fact, all commutative C ∗-algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor X ⇝ C0(X ) defines an equivalence of
categories of LCH spaces (with proper continuous maps as morphisms)
and commutative C ∗-algebras (with non-degenerate ∗-homomorphisms as
morphisms).

In other words: By passing from the space X the function algebra C0(X ),
no information is lost. In fact, X can be recovered from C0(X ). Thus,
topological properties of X can be translated into algebraic properties of
C0(X ), and vice versa. Therefore, the theory of C ∗-algebras is often
thought of as noncommutative topology.
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Throughout, A will be a C ∗-algebra.

By Z (A) we denote the centre of A.

By an ideal of A we always mean a closed two-sided ideal.

An ideal I of A is said to be essential if I has a non-zero intersection
with every other non-zero ideal of A.

The multiplier algebra of A is the C ∗-subalgebra M(A) of the
enveloping von Neumann algebra A∗∗ that consists of all x ∈ A∗∗ such
that ax ∈ A and xa ∈ A for all a ∈ A. M(A) is the largest unital
C ∗-algebra which contains A as an essential ideal.

We denote by Â the spectrum of A (i.e. the set of unitary equivalence
classes of irreducible representations of A), and by Prim(A) the
primitive ideal space of A (i.e. kernels of irreducible representations).
Both spaces are equipped with the Jacobson (hull-kernel) topology,
i.e. the closure of a subset S of Prim(A) is given by

S :=

P ∈ Prim(A) : ker S =
⋂
Q∈S

Q ⊆ P

 .
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Ilja Gogić (University of Zagreb) Derivations on C∗-Algebras: A Revisit Bologna, June 13, 2025 7 / 30



Throughout, A will be a C ∗-algebra.

By Z (A) we denote the centre of A.

By an ideal of A we always mean a closed two-sided ideal.

An ideal I of A is said to be essential if I has a non-zero intersection
with every other non-zero ideal of A.

The multiplier algebra of A is the C ∗-subalgebra M(A) of the
enveloping von Neumann algebra A∗∗ that consists of all x ∈ A∗∗ such
that ax ∈ A and xa ∈ A for all a ∈ A. M(A) is the largest unital
C ∗-algebra which contains A as an essential ideal.
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Ilja Gogić (University of Zagreb) Derivations on C∗-Algebras: A Revisit Bologna, June 13, 2025 7 / 30



Derivations on C ∗-algebras

A derivation on A is a linear map δ : A → A satisfying the Leibniz rule

δ(xy) = δ(x)y + xδ(y), ∀x , y ∈ A.

Basic properties of derivations of C ∗-algebras

Any derivation on a C ∗-algebra is automatically bounded.

If δ is a derivation on A and I an arbitrary ideal of A, then δ(I ) ⊆ I .

Any derivation on A vanishes on Z (A). In particular, commutative
C ∗-algebras do not admit non-zero derivations.

If δ is a derivation on A, then δ∗∗ is a derivation on A∗∗ and
δ∗∗(M(A)) ⊆ M(A). In particular, any derivation on A extends to a
derivation δ̃ of M(A) of the same norm (i.e. δ̃ = δ∗∗|M(A)).
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A derivation δ on A is called an inner derivation if there exists a
multiplier a ∈ M(A) such that

δ(x) = [a, x ] := ax − xa, ∀x ∈ A.

In the application to physics, innerness of a derivation corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Main problem

Which C ∗-algebras admit only inner derivations?

Some C ∗-algebras which admit only inner derivations:

von Neumann algebras (Kadison-Sakai 1966);

simple C ∗-algebras (Sakai 1968);

AW ∗-algebras (Olesen 1974);

homogeneous C ∗-algebras (Sproston 1976 - unital case; G. 2013 -
extension to the non-unital case).
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AW ∗-algebras

An AW ∗-algebra is a C ∗-algebra A whose every maximal abelian
subalgebra (MASA) is monotone complete.

AW ∗-algebras were introduced by Kaplansky in 1951 in an attempt to
give an abstract algebraic characterization of von Neumann algebras
(W ∗-algebras).

A commutative C ∗-algebra is an AW ∗-algebra if and only if its
structure space is Stonean (i.e. an extremely disconnected compact
Hausdorff space).

Every von Neumann algebra is an AW ∗-algebra (the converse fails -
the Dixmier’s commutative example from 1951). Just as for von
Neumann algebras, AW ∗-algebras can be divided into Type I , Type
II , and Type III .

All type I AW ∗-algebras are monotone complete (Hamana 1981), but
it is unknown whether all AW ∗-algebras are monotone complete; this
is a long standing open problem dating back to the work of Kaplansky.
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Homogeneous C ∗-algebras

A C ∗-algebra A is said to be (n-)homogeneous if all irreducible
representations of A have the same finite dimension n.

The 1-homogeneous C ∗-algebras are precisely the commutative ones,
hence of the form A = C0(X ) for some LCH space X .

For each LCH space X , the C ∗-algebra C0(X ,Mn) is n-homogeneous.

More generally, if E is an algebraic Mn-bundle over a LCH space X ,
i.e. E is a locally trivial fibre bundle with fibre Mn and structure
group Aut(Mn) ∼= PU(n) (the projective unitary group), then the set
Γ0(E ) of all continuous sections of E vanishing at infinity is an
n-homogeneous C ∗-algebra, with respect to the fiberwise operations
and sup-norm.

By a famous theorem due to Fell and Tomiyama-Takesaki from 1961,
every n-homogeneous C ∗-algebra A can be realized as A = Γ0(E ) for
some algebraic Mn-bundle E over Prim(A) (which is always a LCH
space when A is homogeneous).
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Innerness of derivations – the separable case

Back to the main problem, the separable case was completely solved in
1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C ∗-algebra, Then the following conditions are
equivalent:

(i) A admits only inner derivations.

(ii) A = A1 ⊕ A2, where A1 is a continuous-trace C ∗-algebra, and A2 is a
direct sum of simple C ∗-algebras.

On the other hand, for inseparable C ∗-algebras the problem of innerness of
derivations remains widely open, even for:

the quotients of von Neumann/AW ∗-algebras,

the (n-)subhomogeneous C ∗-algebras, i.e. C ∗-algebras such that
n = supπ∈Â dimπ < ∞.
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n = supπ∈Â dimπ < ∞.
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The 2-subhomogeneous case

Let A be a unital 2-subhomogeneous C ∗-algebra. By Vasi’lev description
we can represent A as a full algebra of operators fields on a certain CH
space.

Let T k , k = 1, 2, denote the space of all equivalence classes of
non-zero k-dimensional representations of A.

Let Xk , k = 1, 2, denote the space of all equivalence classes of
non-zero k-dimensional irreducible representations of A.

One can topologize T 2 as a CH space, with X2 as an open subset.

Let X2 be the closure of X2 in T 2 and set ∂X2 := X2 \ X2. Any point
of ∂X2 can be written as an unordered pair [y1, y2] of points in X1.

By Z we denote the open subset of ∂X2 consisting of all pairs [y1, y2]
with y1 ̸= y2.

We have Z = ∂X iff A is a Fell algebra, i.e. for any irreducible
representation π of A there exists a ∈ A such that σ(a) is a rank-one
projection for all σ in some neighborhood π od Â.

If X2 is the Stone-Čech compactification of X2, A is said to have the
Stone-Čech property.
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Let T := X1 ∪ X2, topologized so that a subset S is open in T iff
S ∩ X1 is open in X1 and S ∩ X2 is open in X2.

For t ∈ T , let At denote the quotient A/ ker t. Given a ∈ A, by a(t)
we denote its canonical image in At .

Then A can be identified as a full algebra of operators fields on T , via
the assignment A ∋ a 7→ {t 7→ a(t)}t∈T .

Theorem (Sproston, 1981)

Let A be a unital 2-subhomogeneous C ∗-algebra. Then A admits outer
derivations in either of the following cases:

A is Fell algebra without the Stone-Čech propety.

∂X2 \ Z contains a point with a countable base of neighborhoods.

In 2000 Somerset obtained a complete characterization on unital
2-subhomogeneous Fell C ∗-algebras that admit only inner derivations.

Problem

Is the problem on the innerness of derivations on unital non-Fell
2-subhomogeneous C ∗-algebras decidable within ZFC?
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Ilja Gogić (University of Zagreb) Derivations on C∗-Algebras: A Revisit Bologna, June 13, 2025 14 / 30



The local multiplier algebra

If I and J are two essential ideals of A such that J ⊆ I , then there is an
embedding M(I ) ↪→ M(J).

In this way, we obtain a directed system of C ∗-algebras with isometric
connecting morphisms, where I runs through the directed set Idess(A) of
all essential ideals of A.

The local multiplier algebra of A is the direct limit C ∗-algebra

Mloc(A) := (C ∗−) lim
−→

{M(I ) : I ∈ Idess(A)}.

Iterating the construction, one obtains the following tower of C ∗-algebras
which, a priori, does not have the largest element:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ · · ·

Example

If A is simple, then obviously Mloc(A) = M(A). If A is an AW ∗-algebra,
then Mloc(A) = A.
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Example

If A = C0(X ) is a commutative C ∗-algebra, then Mloc(A) is a
commutative AW ∗-algebra whose maximal ideal space can be identified
with the inverse limit lim

←−
βU of Stone-Čech compactifications βU of dense

open subsets U of X .

The concept of the local multiplier algebra was introduced by Pedersen in
1978 (he called it the ”C ∗-algebra of essential multipliers”).

Theorem (Pedersen 1978)

Every derivation on a C ∗-algebra A extends uniquely and under
preservation of the norm to a derivation on Mloc(A). Moreover, if A is
separable (or more generally, if every essential closed ideal of A is
σ-unital), this extension becomes inner in Mloc(A).

In particular, Pedersen’s result entails Sakai’s theorem that every
derivation on a simple unital C ∗-algebra is inner.
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Pedersen’s problem

Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, an affirmative answer in the inseparable case would cover,
extend and unify the results that all derivations on simple C ∗-algebras and
AW ∗-algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on Mloc(A)

If A is an arbitrary C ∗-algebra, is every derivation on Mloc(A) inner?

It is known that Mloc(A) has only inner derivations for:

Simple C ∗-algebras and AW ∗-algebras (Kadison, Sakai, Olesen);

quasi-central separable C ∗-algebras such that Prim(A) contains a
dense Gδ subset consisting of closed points (Somerset 2000,
Ara-Mathieu 2011);

C ∗-algebras with finite-dimensional irreducible representations (G.
2013).
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The stability problem of local multiplier algebras

Problem A

Is Mloc(Mloc(A)) = Mloc(A) for every C ∗-algebra A?

There is another important characterization of Mloc(A), which was first
obtained by Frank and Paulsen in 2003.

For a C ∗-algebra A, let us denote by I (A) its injective envelope as
introduced by Hamana in 1979.

I (A) is not an injective object in the category of C ∗-algebras and
∗-homomorphisms, but in the category of operator spaces and complete
contractions.

However, it turns out that (nevertheless) I (A) is a C ∗-algebra canonically
containing A as a C ∗-subalgebra. Moreover, I (A) is monotone complete,
so in particular, I (A) is an AW ∗-algebra.
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Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I (A), Mloc(A) is the norm closure of the
set of all x ∈ I (A) which act as a multiplier on some I ∈ Idess(A), i.e.

Mloc(A) =

 ⋃
I∈Idess(A)

{x ∈ I (A) : xI + Ix ⊆ I}

=

Thus, we have the following inclusion of C ∗-algebras:

A ⊆ Mloc(A) ⊆ A ⊆ I (A),

where A is the regular monotone completion of A.

Moreover, one has I (Mloc(A)) = I (A), so we have an additional
sequence of inclusions of C ∗-algebras:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ · · · ⊆ A ⊆ I (A).
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Problem B

When is Mloc(A) = I (A), or at least Mloc(A) = A?

This question is very difficult to answer. Indeed, let A be an AW ∗-algebra.

Then, as already mentioned, Mloc(A) = A.

On the other hand, A coincides with A if and only if A is monotone
complete.

This is true if A is of type I ; in this case A is injective (Hamana,
1981).

However, for arbitrary AW ∗-algebras this brings us back to the long
standing open problem, originating with the work of Kaplansky
(1951): Are all AW ∗-algebras monotone complete?
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The C ∗-algebras Mloc(A) and I (A) are difficult to determine precisely, even
for fairly rudimentary types of C ∗-algebras.

Let A = C0(X ) be a commutative C ∗-algebra.

Then Mloc(A) is a commutative AW ∗-algebra. In particular, Mloc(A)
is injective, so

Mloc(A) = Mloc(Mloc(A)) = I (A).

The maximal ideal space of Mloc(A) = I (A) can be identified with the
inverse limit lim

←−
βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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The stability problem has a negative answer

The first class of examples of C ∗-algebras demonstrating a negative
answer to Problem A was given by Ara and Mathieu (2006): There
exist unital separable approximately finite-dimensional primitive
C ∗-algebras A such that Mloc(Mloc(A)) ̸= Mloc(A).

Soon after, Argerami, Farenick and Massey (2009) showed that a
relatively well-behaved C ∗-algebra C ([0, 1])⊗K also fails to satisfy
Mloc(Mloc(A)) = Mloc(A).

This example was further developed by Ara and Mathieu (2011), who
showed that if X is a perfect, second countable LCH space, and
A = C0(X )⊗ B for some non-unital separable simple C ∗-algebra B,
then Mloc(Mloc(A)) ̸= Mloc(A).
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This leads to the following restatement of Problem A:

Problem A’

When is Mloc(Mloc(A)) = Mloc(A)?

We have the following partial answer:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C ∗-algebra such
that Prim(A) contains a dense Gδ subset of closed points, then
Mloc(Mloc(A)) = Mloc(A). Moreover, in this case Mloc(A) has only inner
derivations.
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On the other hand, Mloc(Mloc(A)) is always a type I AW ∗-algebra,
whenever A is separable and liminal. More generally:

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C ∗-algebra A is of type I , then A has a
liminal essential ideal. The converse is also true if A is separable.
Moreover, in this case Mloc(Mloc(A)) is an AW ∗-algebra of type I .

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then Mloc(Mloc(A)) is an AW ∗-algebra of
type I .

This result applies in particular to algebras of the form A = C0(X )⊗K,
for any LCH space X .
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On the other hand, for (not necessarily separable) C ∗-algebras A that
admit only finite-dimensional irreducibe representations we obtained a full
description of Mloc(A):

Theorem (G., 2013)

If all irreducible representations of A are finite-dimensional, then Mloc(A)
is a finite or countable direct product of C ∗-algebras of the form
C (Xn)⊗Mn, where each space Xn is Stonean. In particular, Mloc(A) is an
AW ∗-algebra of type I , so it coincides with the injective envelope of A and
therefore admits only inner derivations.

Recall that a space X is said to be Stonean if it is an extremally
disconnected CH space. It is well known that a commutative C ∗-algebra
A = C0(X ) is an AW ∗-algebra if and only if X is a Stonean space.

Problem

Is Pedersen’s problem on the innerness of derivations on local multiplier
algebras decidable within ZFC?
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Derivations in the cb-norm closure of elementary operators

An attractive and fairly large class of bounded linear maps ϕ : A → A that
preserve all ideals of A consists of of elementary operators, that is, those
that can be expressed as a finite sum

ϕ =
∑
i

Mai ,bi

of two-sided multiplications Mai ,bi : x 7→ aixbi , where ai , bi ∈ M(A).

In fact, elementary operators are completely bounded (cb), i.e.

∥ϕ∥cb := sup
n∈N

∥ϕn∥ < ∞,

where for each n, ϕn is an induced map on Mn(A), i.e.

ϕn([aij ]) = [ϕ(aij)].

Let us denote by Eℓ(A) the set of all elementary operators on A and by

Eℓ(A)cb its cb-norm closure.
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We have the following general question:

Problem

Which completely bounded operators ϕ : A → A lie in the cb-norm closure

of elementary operators, i.e. can we characterize Eℓ(A)cb?

Obviously ∗-automorphisms of C ∗-algebras A are completely bounded.
The same holds true for derivations: if δ is a derivation on A, it extends to
a derivation δ∗∗ of A∗∗, and thus δ∗∗ is inner in A∗∗ by the Kadison-Sakai
theorem.

In particular, the above problem applies to those class of maps.

Theorem (G. 2013)

If A is a unital C ∗-algebra whose every Glimm ideal is prime, then a

derivation δ of A lies in Eℓ(A)cb if and only if δ is an inner derivation.

The Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z (A).
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Example

The class of C ∗-algebras whose every Glimm ideal is prime includes:

prime C ∗-algebras;

C ∗-algebras with Hausdorff primitive spectrum;

quotients of AW ∗-algebras;

local multiplier algebras.

Corollary

The Pederesen’s problem has a positive solution if and only if for each

C ∗-algebra A, every derivation on Mloc(A) lies in Eℓ(Mloc(A))cb.

For prime C ∗-algebras we also established the following result:

Theorem (G. 2021)

If A is a prime C ∗-algebra then an algebra epimorphism σ : A → A lies in

Eℓ(A)cb if and only if σ is an inner automorphism of A.
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In a contrast to the similar result for derivations, the above result cannot
be extended even to homogeneous C ∗-algebras, which admit only inner
derivations (by Sproston’s Theorem):

Example

For n ≥ 2 let An = C (PU(n),Mn). Then An admits outer automorphisms
that are simultaneously elementary operators.

On the other hand:

Proposition (G. 2021)

Let A be a separable n-homogeneous C ∗-algebra whose primitive spectrum
X is locally contractable. Then every Z (M(A))-linear automorphism of A
becomes inner when extended to Mloc(A). In particular, all elementary
automorphisms on An = C (PU(n),Mn) become inner in Mloc(An).
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Moreover, if the primitive spectrum of a C ∗-algebra A is rather
pathological, it can happen that A admits both outer derivations and outer
automorphisms that are simultaneously elementary operators:

Example

Let A be a C ∗-subalgebra of B = C ([1,∞],M2) consisting of all a ∈ B
such that

a(n) =

[
λn(a) 0
0 λn+1(a)

]
, n ∈ N,

for some convergent sequence (λn(a))n∈N of complex numbers. Then A
admits outer derivations and outer automorphisms that are also
elementary operators. In fact, there are outer derivations of A of the form
δ = Ma,b −Mb,a for suitable a, b ∈ A.

Problem

Characterize the class of unital C ∗-algebras A with the property that any

derivation in Eℓ(A)cb (or Eℓ(A)) is necessarily inner.
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