Derivations on C*-Algebras: A Revisit

Ilja Gogić

Department of Mathematics, Faculty of Science University of Zagreb

Logic, Categories, and Applications Seminar Department of Mathematics - University of Bologna June 13, 2025

A C^* -algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

A C^* -algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

• A is a Banach algebra with identity over the field \mathbb{C} .

A C^* -algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra with identity over the field \mathbb{C} .
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*, \quad (ab)^* = b^* a^*, \quad \text{and} \quad (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

A C^* -algebra is a complex Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra with identity over the field C.
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*, \quad (ab)^* = b^* a^*, \quad \text{and} \quad (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

• Norm $\|\cdot\|$ satisfies the C^* -identity, i.e.

$$\|a^*a\| = \|a\|^2$$

for all $a \in A$.

• C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.
- A state of the system is defined as a positive unital linear functional on A – if the system is in the state ω, then ω(a) is the expected value of the observable a.

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.
- A state of the system is defined as a positive unital linear functional on A – if the system is in the state ω, then ω(a) is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups {Φ_t}_{t∈ℝ} describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators are the *-derivations.

- C*-algebras are historically associated with the development of QM through the groundbreaking work of Heisenberg, Jordan and von Neumann in the late 1920s.
- In QM a physical system can be described via a unital C^* -algebra A.
- The self-adjoint elements of A are thought of as the observables the measurable quantities of the system.
- A state of the system is defined as a positive unital linear functional on A – if the system is in the state ω, then ω(a) is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups {Φ_t}_{t∈ℝ} describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators are the *-derivations.

Since the 1960s C^* -algebras serve as a natural mathematical framework for the quantum field theory.

The C^{*}-identity is a very strong requirement. For instance, for any $a \in A$ let $\sigma(a)$ denote the spectrum of a, i.e.

$$\sigma(a) := \{\lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible in } A\}.$$

Then the C^* -identity combined with the spectral radius formula

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}},$$

implies that the C^* -norm is uniquely determined by the algebraic structure:

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \max\{|\lambda|: \lambda \in \sigma(a^*a)\}.$$

The C^{*}-identity is a very strong requirement. For instance, for any $a \in A$ let $\sigma(a)$ denote the spectrum of a, i.e.

$$\sigma(a) := \{\lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible in } A\}.$$

Then the C^* -identity combined with the spectral radius formula

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}},$$

implies that the C^* -norm is uniquely determined by the algebraic structure:

$$\|a\|^2 = \|a^*a\| = r(a^*a) = \max\{|\lambda| : \lambda \in \sigma(a^*a)\}.$$

In the category of C^* -algebras, the natural candidates for morphisms are the *-**homomorphisms**, i.e. the algebra homomorphisms which which preserve the involution. Basic properties:

- they are automatically contractive (isometric if injective), and
- their image is a C^* -subalgebra of the codomain C^* -algebra.

Ilja Gogić (University of Zagreb) Derivations on C^* -Algebras: A Revisit

To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.

- To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n(ℂ) are C*-algebras.

- To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n(ℂ) are C*-algebras.
- Any C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (the noncommutative Gelfand-Naimark theorem).

- To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n(ℂ) are C*-algebras.
- Any C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (the noncommutative Gelfand-Naimark theorem).
- To any LC group G, one can associate a C*-algebra C*(G).
 Everything about the representation theory of G is encoded in C*(G).

- To any LCH (locally compact Hausdorff) space one can associate a commutative C*-algebra C₀(X) of all continuous functions f : X → C that vanish at infinity, with respect to the pointwise operations, involution f*(x) := f(x), and sup-norm ||f||_∞ := sup_{x∈X} |f(x)|.
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In particular, the complex matrix algebras M_n(ℂ) are C*-algebras.
- Any C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (the noncommutative Gelfand-Naimark theorem).
- To any LC group G, one can associate a C*-algebra C*(G).
 Everything about the representation theory of G is encoded in C*(G).
- The category of C*-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (C*-)tensor products, etc.

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^* -algebras (with non-degenerate *-homomorphisms as morphisms).

In fact, all commutative C^* -algebras arise as in previous example:

Theorem (Commutative Gelfand-Naimark theorem, 1943)

The (contravariant) functor $X \rightsquigarrow C_0(X)$ defines an equivalence of categories of LCH spaces (with proper continuous maps as morphisms) and commutative C^* -algebras (with non-degenerate *-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra $C_0(X)$, no information is lost. In fact, X can be recovered from $C_0(X)$. Thus, topological properties of X can be translated into algebraic properties of $C_0(X)$, and vice versa. Therefore, the theory of C^* -algebras is often thought of as **noncommutative topology**.

6/30

• By Z(A) we denote the centre of A.

- By Z(A) we denote the centre of A.
- By an ideal of A we always mean a closed two-sided ideal.

- By Z(A) we denote the centre of A.
- By an ideal of A we always mean a closed two-sided ideal.
- An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.

- By Z(A) we denote the centre of A.
- By an ideal of A we always mean a closed two-sided ideal.
- An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.
- The multiplier algebra of A is the C*-subalgebra M(A) of the enveloping von Neumann algebra A** that consists of all x ∈ A** such that ax ∈ A and xa ∈ A for all a ∈ A. M(A) is the largest unital C*-algebra which contains A as an essential ideal.

- By Z(A) we denote the centre of A.
- By an ideal of A we always mean a closed two-sided ideal.
- An ideal *I* of *A* is said to be **essential** if *I* has a non-zero intersection with every other non-zero ideal of *A*.
- The multiplier algebra of A is the C*-subalgebra M(A) of the enveloping von Neumann algebra A** that consists of all x ∈ A** such that ax ∈ A and xa ∈ A for all a ∈ A. M(A) is the largest unital C*-algebra which contains A as an essential ideal.
- We denote by the spectrum of A (i.e. the set of unitary equivalence classes of irreducible representations of A), and by Prim(A) the primitive ideal space of A (i.e. kernels of irreducible representations). Both spaces are equipped with the Jacobson (hull-kernel) topology, i.e. the closure of a subset S of Prim(A) is given by

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : \ker S = \bigcap_{Q \in S} Q \subseteq P \right\}.$$

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

A derivation on A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

Basic properties of derivations of C*-algebras

• Any derivation on a C*-algebra is automatically bounded.

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

- Any derivation on a C*-algebra is automatically bounded.
- If δ is a derivation on A and I an arbitrary ideal of A, then $\delta(I) \subseteq I$.

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

- Any derivation on a C*-algebra is automatically bounded.
- If δ is a derivation on A and I an arbitrary ideal of A, then $\delta(I) \subseteq I$.
- Any derivation on A vanishes on Z(A). In particular, commutative C*-algebras do not admit non-zero derivations.

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y), \quad \forall x, y \in A.$$

- Any derivation on a C*-algebra is automatically bounded.
- If δ is a derivation on A and I an arbitrary ideal of A, then $\delta(I) \subseteq I$.
- Any derivation on A vanishes on Z(A). In particular, commutative C*-algebras do not admit non-zero derivations.
- If δ is a derivation on A, then δ^{**} is a derivation on A^{**} and δ^{**}(M(A)) ⊆ M(A). In particular, any derivation on A extends to a derivation δ̃ of M(A) of the same norm (i.e. δ̃ = δ^{**}|_{M(A)}).

A derivation δ on A is called an **inner derivation** if there exists a multiplier $a \in M(A)$ such that

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

A derivation δ on A is called an **inner derivation** if there exists a multiplier $a \in M(A)$ such that

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^* -algebras admit only inner derivations?

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem Which *C**-algebras admit only inner derivations?

Some *C**-algebras which admit only inner derivations:

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem Which *C**-algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai 1966);

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);

$$\delta(x) = [a, x] := ax - xa, \quad \forall x \in A.$$

In the application to physics, innerness of a derivation corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
- homogeneous C*-algebras (Sproston 1976 unital case; G. 2013 extension to the non-unital case).

An AW^* -algebra is a C^* -algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

• AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
- Every von Neumann algebra is an AW*-algebra (the converse fails the Dixmier's commutative example from 1951). Just as for von Neumann algebras, AW*-algebras can be divided into Type *I*, Type *II*, and Type *III*.

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
- Every von Neumann algebra is an AW*-algebra (the converse fails the Dixmier's commutative example from 1951). Just as for von Neumann algebras, AW*-algebras can be divided into Type *I*, Type *II*, and Type *III*.
- All type *I AW**-algebras are monotone complete (Hamana 1981), but it is unknown whether all *AW**-algebras are monotone complete; this is a long standing open problem dating back to the work of Kaplansky.

A C^* -algebra A is said to be (n-)homogeneous if all irreducible representations of A have the same finite dimension n.

• The 1-homogeneous C*-algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some LCH space X.

- The 1-homogeneous C*-algebras are precisely the commutative ones, hence of the form A = C₀(X) for some LCH space X.
- For each LCH space X, the C*-algebra $C_0(X, \mathbb{M}_n)$ is *n*-homogeneous.

- The 1-homogeneous C*-algebras are precisely the commutative ones, hence of the form A = C₀(X) for some LCH space X.
- For each LCH space X, the C*-algebra $C_0(X, \mathbb{M}_n)$ is *n*-homogeneous.
- More generally, if E is an algebraic M_n-bundle over a LCH space X, i.e. E is a locally trivial fibre bundle with fibre M_n and structure group Aut(M_n) ≅ PU(n) (the projective unitary group), then the set Γ₀(E) of all continuous sections of E vanishing at infinity is an *n*-homogeneous C*-algebra, with respect to the fiberwise operations and sup-norm.

- The 1-homogeneous C*-algebras are precisely the commutative ones, hence of the form A = C₀(X) for some LCH space X.
- For each LCH space X, the C*-algebra $C_0(X, \mathbb{M}_n)$ is *n*-homogeneous.
- More generally, if *E* is an algebraic \mathbb{M}_n -bundle over a LCH space *X*, i.e. *E* is a locally trivial fibre bundle with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) \cong \operatorname{PU}(n)$ (the projective unitary group), then the set $\Gamma_0(E)$ of all continuous sections of *E* vanishing at infinity is an *n*-homogeneous *C*^{*}-algebra, with respect to the fiberwise operations and sup-norm.
- By a famous theorem due to Fell and Tomiyama-Takesaki from 1961, every *n*-homogeneous C^* -algebra A can be realized as $A = \Gamma_0(E)$ for some algebraic \mathbb{M}_n -bundle E over Prim(A) (which is always a LCH space when A is homogeneous).

Innerness of derivations - the separable case

Innerness of derivations - the separable case

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

Innerness of derivations – the separable case

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

On the other hand, for inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for:

Innerness of derivations – the separable case

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

On the other hand, for inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for:

• the quotients of von Neumann/AW*-algebras,

Innerness of derivations – the separable case

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

On the other hand, for inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for:

- the quotients of von Neumann/AW*-algebras,
- the (*n*-)**subhomogeneous** C^* -algebras, i.e. C^* -algebras such that $n = \sup_{\pi \in \hat{A}} \dim \pi < \infty$.

Let A be a unital 2-subhomogeneous C^* -algebra. By Vasi'lev description we can represent A as a full algebra of operators fields on a certain CH space.

• Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.
- One can topologize T^2 as a CH space, with X_2 as an open subset.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.
- One can topologize T^2 as a CH space, with X_2 as an open subset.
- Let X₂ be the closure of X₂ in T² and set ∂X₂ := X₂ \ X₂. Any point of ∂X₂ can be written as an unordered pair [y₁, y₂] of points in X₁.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.
- One can topologize T^2 as a CH space, with X_2 as an open subset.
- Let X₂ be the closure of X₂ in T² and set ∂X₂ := X₂ \ X₂. Any point of ∂X₂ can be written as an unordered pair [y₁, y₂] of points in X₁.
- By Z we denote the open subset of ∂X_2 consisting of all pairs $[y_1, y_2]$ with $y_1 \neq y_2$.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.
- One can topologize T^2 as a CH space, with X_2 as an open subset.
- Let X₂ be the closure of X₂ in T² and set ∂X₂ := X₂ \ X₂. Any point of ∂X₂ can be written as an unordered pair [y₁, y₂] of points in X₁.
- By Z we denote the open subset of ∂X₂ consisting of all pairs [y₁, y₂] with y₁ ≠ y₂.
- We have Z = ∂X iff A is a Fell algebra, i.e. for any irreducible representation π of A there exists a ∈ A such that σ(a) is a rank-one projection for all σ in some neighborhood π od Â.

- Let T^k , k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional representations of A.
- Let X_k, k = 1, 2, denote the space of all equivalence classes of non-zero k-dimensional irreducible representations of A.
- One can topologize T^2 as a CH space, with X_2 as an open subset.
- Let X₂ be the closure of X₂ in T² and set ∂X₂ := X₂ \ X₂. Any point of ∂X₂ can be written as an unordered pair [y₁, y₂] of points in X₁.
- By Z we denote the open subset of ∂X₂ consisting of all pairs [y₁, y₂] with y₁ ≠ y₂.
- We have Z = ∂X iff A is a Fell algebra, i.e. for any irreducible representation π of A there exists a ∈ A such that σ(a) is a rank-one projection for all σ in some neighborhood π od Â.
- If $\overline{X_2}$ is the Stone-Čech compactification of X_2 , A is said to have the **Stone-Čech property**.

• Let $T := X_1 \cup \overline{X_2}$, topologized so that a subset S is open in T iff $S \cap X_1$ is open in X_1 and $S \cap \overline{X_2}$ is open in $\overline{X_2}$.

- Let $T := X_1 \cup \overline{X_2}$, topologized so that a subset S is open in T iff $S \cap X_1$ is open in X_1 and $S \cap \overline{X_2}$ is open in $\overline{X_2}$.
- For t ∈ T, let A_t denote the quotient A/ ker t. Given a ∈ A, by a(t) we denote its canonical image in A_t.
- Then A can be identified as a full algebra of operators fields on T, via the assignment A ∋ a ↦ {t ↦ a(t)}_{t∈T}.

- Let $T := X_1 \cup \overline{X_2}$, topologized so that a subset S is open in T iff $S \cap X_1$ is open in X_1 and $S \cap \overline{X_2}$ is open in $\overline{X_2}$.
- For t ∈ T, let A_t denote the quotient A/ ker t. Given a ∈ A, by a(t) we denote its canonical image in A_t.
- Then A can be identified as a full algebra of operators fields on T, via the assignment A ∋ a ↦ {t ↦ a(t)}_{t∈T}.

Theorem (Sproston, 1981)

Let A be a unital 2-subhomogeneous C^* -algebra. Then A admits outer derivations in either of the following cases:

- A is Fell algebra without the Stone-Čech propety.
- $\partial X_2 \setminus Z$ contains a point with a countable base of neighborhoods.

- Let $T := X_1 \cup \overline{X_2}$, topologized so that a subset S is open in T iff $S \cap X_1$ is open in X_1 and $S \cap \overline{X_2}$ is open in $\overline{X_2}$.
- For t ∈ T, let A_t denote the quotient A/ ker t. Given a ∈ A, by a(t) we denote its canonical image in A_t.
- Then A can be identified as a full algebra of operators fields on T, via the assignment A ∋ a ↦ {t ↦ a(t)}_{t∈T}.

Theorem (Sproston, 1981)

Let A be a unital 2-subhomogeneous C^* -algebra. Then A admits outer derivations in either of the following cases:

- A is Fell algebra without the Stone-Čech propety.
- $\partial X_2 \setminus Z$ contains a point with a countable base of neighborhoods.

In 2000 Somerset obtained a complete characterization on unital 2-subhomogeneous Fell C^* -algebras that admit only inner derivations.

- Let $T := X_1 \cup \overline{X_2}$, topologized so that a subset S is open in T iff $S \cap X_1$ is open in X_1 and $S \cap \overline{X_2}$ is open in $\overline{X_2}$.
- For t ∈ T, let A_t denote the quotient A/ ker t. Given a ∈ A, by a(t) we denote its canonical image in A_t.
- Then A can be identified as a full algebra of operators fields on T, via the assignment A ∋ a ↦ {t ↦ a(t)}_{t∈T}.

Theorem (Sproston, 1981)

Let A be a unital 2-subhomogeneous C^* -algebra. Then A admits outer derivations in either of the following cases:

- A is Fell algebra without the Stone-Čech propety.
- $\partial X_2 \setminus Z$ contains a point with a countable base of neighborhoods.

In 2000 Somerset obtained a complete characterization on unital 2-subhomogeneous Fell C^* -algebras that admit only inner derivations.

Problem

Is the problem on the innerness of derivations on unital non-Fell 2-subhomogeneous C^* -algebras decidable within ZFC?

Ilja Gogić (University of Zagreb)

Derivations on C*-Algebras: A Revi

14 / 30

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

The local multiplier algebra of A is the direct limit C^* -algebra

 $M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

The local multiplier algebra of A is the direct limit C^* -algebra

 $M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

The local multiplier algebra of A is the direct limit C^* -algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$$

Iterating the construction, one obtains the following tower of C^* -algebras which, a priori, does not have the largest element:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq \cdots$$

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

The local multiplier algebra of A is the direct limit C^* -algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$$

Iterating the construction, one obtains the following tower of C^* -algebras which, a priori, does not have the largest element:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq \cdots$$

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$. If A is an AW^* -algebra, then $M_{loc}(A) = A$.

15 / 30

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation on a C*-algebra A extends uniquely and under preservation of the norm to a derivation on $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation on a C^{*}-algebra A extends uniquely and under preservation of the norm to a derivation on $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

In particular, Pedersen's result entails Sakai's theorem that every derivation on a simple unital C^* -algebra is inner.

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation on $M_{loc}(A)$ inner?

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation on $M_{loc}(A)$ inner?

It is known that $M_{\rm loc}(A)$ has only inner derivations for:

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation on $M_{loc}(A)$ inner?

It is known that $M_{\rm loc}(A)$ has only inner derivations for:

• Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on $M_{loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation on $M_{loc}(A)$ inner?

It is known that $M_{\rm loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);

17 / 30

Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^* -algebra, an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations on simple C^* -algebras and AW^* -algebras are inner.

This led Pedersen to ask:

Problem of the innerness of derivations on $M_{loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation on $M_{loc}(A)$ inner?

It is known that $M_{\rm loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C*-algebras with finite-dimensional irreducible representations (G. 2013).

Problem A

Is
$$M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$$
 for every C*-algebra A?

There is another important characterization of $M_{loc}(A)$, which was first obtained by Frank and Paulsen in 2003.

Problem A

Is
$$M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$$
 for every C*-algebra A?

There is another important characterization of $M_{loc}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

Problem A

Is
$$M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$$
 for every C*-algebra A?

There is another important characterization of $M_{loc}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete contractions.

Problem A

Is
$$M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$$
 for every C*-algebra A?

There is another important characterization of $M_{loc}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete contractions.

However, it turns out that (nevertheless) I(A) is a C^* -algebra canonically containing A as a C^* -subalgebra. Moreover, I(A) is monotone complete, so in particular, I(A) is an AW^* -algebra.

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{x \in I(A) : xI + Ix \subseteq I\}\right)^{=}$$

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{x \in I(A) : xI + Ix \subseteq I\}\right)^{=}$$

• Thus, we have the following inclusion of C*-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq \overline{A} \subseteq I(A),$$

where \overline{A} is the regular monotone completion of A.

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + lx \subseteq I \} \right)^{=}$$

• Thus, we have the following inclusion of C*-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq \overline{A} \subseteq I(A),$$

where \overline{A} is the regular monotone completion of A.

• Moreover, one has $I(M_{loc}(A)) = I(A)$, so we have an additional sequence of inclusions of C^* -algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq \cdots \subseteq \overline{A} \subseteq I(A).$$

When is $M_{\text{loc}}(A) = I(A)$, or at least $M_{\text{loc}}(A) = \overline{A}$?

When is
$$M_{\text{loc}}(A) = I(A)$$
, or at least $M_{\text{loc}}(A) = \overline{A}$?

When is
$$M_{\text{loc}}(A) = I(A)$$
, or at least $M_{\text{loc}}(A) = \overline{A}$?

This question is very difficult to answer. Indeed, let A be an AW^* -algebra.

• Then, as already mentioned, $M_{loc}(A) = A$.

When is
$$M_{\text{loc}}(A) = I(A)$$
, or at least $M_{\text{loc}}(A) = \overline{A}$?

- Then, as already mentioned, $M_{loc}(A) = A$.
- On the other hand, A coincides with \overline{A} if and only if A is monotone complete.

When is
$$M_{\text{loc}}(A) = I(A)$$
, or at least $M_{\text{loc}}(A) = \overline{A}$?

- Then, as already mentioned, $M_{loc}(A) = A$.
- On the other hand, A coincides with \overline{A} if and only if A is monotone complete.
- This is true if A is of type I; in this case A is injective (Hamana, 1981).

When is
$$M_{
m loc}(A) = I(A)$$
, or at least $M_{
m loc}(A) = \overline{A}$?

- Then, as already mentioned, $M_{loc}(A) = A$.
- On the other hand, A coincides with \overline{A} if and only if A is monotone complete.
- This is true if A is of type I; in this case A is injective (Hamana, 1981).
- However, for arbitrary AW*-algebras this brings us back to the long standing open problem, originating with the work of Kaplansky (1951): Are all AW*-algebras monotone complete?

Let $A = C_0(X)$ be a commutative C^* -algebra.

Let $A = C_0(X)$ be a commutative C^* -algebra.

Then M_{loc}(A) is a commutative AW*-algebra. In particular, M_{loc}(A) is injective, so

$$M_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) = I(A).$$

Let $A = C_0(X)$ be a commutative C^* -algebra.

Then M_{loc}(A) is a commutative AW*-algebra. In particular, M_{loc}(A) is injective, so

$$M_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) = I(A).$$

• The maximal ideal space of $M_{loc}(A) = I(A)$ can be identified with the inverse limit $\lim_{K \to 0} \beta U$ of Stone-Čech compactifications βU of dense open subsets \bigcup_{U} of X.

21 / 30

The stability problem has a negative answer

The stability problem has a negative answer

• The first class of examples of C^* -algebras demonstrating a negative answer to Problem A was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{loc}(M_{loc}(A)) \neq M_{loc}(A)$.

The stability problem has a negative answer

- The first class of examples of C^* -algebras demonstrating a negative answer to Problem A was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{loc}(M_{loc}(A)) \neq M_{loc}(A)$.
- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^* -algebra $C([0,1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$.

The stability problem has a negative answer

- The first class of examples of C^* -algebras demonstrating a negative answer to Problem A was given by Ara and Mathieu (2006): There exist unital separable approximately finite-dimensional primitive C^* -algebras A such that $M_{loc}(M_{loc}(A)) \neq M_{loc}(A)$.
- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^* -algebra $C([0,1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.
- This example was further developed by Ara and Mathieu (2011), who showed that if X is a perfect, second countable LCH space, and A = C₀(X) ⊗ B for some non-unital separable simple C*-algebra B, then M_{loc}(M_{loc}(A)) ≠ M_{loc}(A).

This leads to the following restatement of Problem A:

Problem A' When is $M_{loc}(M_{loc}(A)) = M_{loc}(A)$? This leads to the following restatement of Problem A:

Problem A'

When is $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$?

We have the following partial answer:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C*-algebra such that Prim(A) contains a dense G_{δ} subset of closed points, then $M_{loc}(M_{loc}(A)) = M_{loc}(A)$. Moreover, in this case $M_{loc}(A)$ has only inner derivations.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^* -algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW^* -algebra of type I.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^* -algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW^* -algebra of type I.

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then $M_{\rm loc}(M_{\rm loc}(A))$ is an AW*-algebra of type I.

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C^* -algebra A is of type I, then A has a liminal essential ideal. The converse is also true if A is separable. Moreover, in this case $M_{loc}(M_{loc}(A))$ is an AW^* -algebra of type I.

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then $M_{\rm loc}(M_{\rm loc}(A))$ is an AW*-algebra of type I.

This result applies in particular to algebras of the form $A = C_0(X) \otimes \mathbb{K}$, for any LCH space X.

Theorem (G., 2013)

If all irreducible representations of A are finite-dimensional, then $M_{loc}(A)$ is a finite or countable direct product of C^* -algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW^* -algebra of type I, so it coincides with the injective envelope of A and therefore admits only inner derivations.

Theorem (G., 2013)

If all irreducible representations of A are finite-dimensional, then $M_{loc}(A)$ is a finite or countable direct product of C^* -algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW^* -algebra of type I, so it coincides with the injective envelope of A and therefore admits only inner derivations.

Recall that a space X is said to be **Stonean** if it is an extremally disconnected CH space. It is well known that a commutative C^* -algebra $A = C_0(X)$ is an AW^* -algebra if and only if X is a Stonean space.

Theorem (G., 2013)

If all irreducible representations of A are finite-dimensional, then $M_{loc}(A)$ is a finite or countable direct product of C^* -algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW^* -algebra of type I, so it coincides with the injective envelope of A and therefore admits only inner derivations.

Recall that a space X is said to be **Stonean** if it is an extremally disconnected CH space. It is well known that a commutative C^* -algebra $A = C_0(X)$ is an AW^* -algebra if and only if X is a Stonean space.

Problem

Is Pedersen's problem on the innerness of derivations on local multiplier algebras decidable within ZFC?

Derivations in the cb-norm closure of elementary operators

An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A consists of of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathsf{a}_{i}, \mathsf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.

Derivations in the cb-norm closure of elementary operators

An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A consists of of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{a_i, b_i}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Derivations in the cb-norm closure of elementary operators

An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A consists of of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{a_i, b_i}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Let us denote by $\mathcal{E}\ell(A)$ the set of all elementary operators on A and by $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ its cb-norm closure.

26 / 30

Problem

Which completely bounded operators $\phi : A \to A$ lie in the cb-norm closure of elementary operators, i.e. can we characterize $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Problem

Which completely bounded operators $\phi : A \to A$ lie in the cb-norm closure of elementary operators, i.e. can we characterize $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Obviously *-automorphisms of C^* -algebras A are completely bounded. The same holds true for derivations: if δ is a derivation on A, it extends to a derivation δ^{**} of A^{**} , and thus δ^{**} is inner in A^{**} by the Kadison-Sakai theorem.

Problem

Which completely bounded operators $\phi : A \to A$ lie in the cb-norm closure of elementary operators, i.e. can we characterize $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Obviously *-automorphisms of C^* -algebras A are completely bounded. The same holds true for derivations: if δ is a derivation on A, it extends to a derivation δ^{**} of A^{**} , and thus δ^{**} is inner in A^{**} by the Kadison-Sakai theorem.

In particular, the above problem applies to those class of maps.

Problem

Which completely bounded operators $\phi : A \to A$ lie in the cb-norm closure of elementary operators, i.e. can we characterize $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Obviously *-automorphisms of C^* -algebras A are completely bounded. The same holds true for derivations: if δ is a derivation on A, it extends to a derivation δ^{**} of A^{**} , and thus δ^{**} is inner in A^{**} by the Kadison-Sakai theorem.

In particular, the above problem applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

Problem

Which completely bounded operators $\phi : A \to A$ lie in the cb-norm closure of elementary operators, i.e. can we characterize $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Obviously *-automorphisms of C^* -algebras A are completely bounded. The same holds true for derivations: if δ is a derivation on A, it extends to a derivation δ^{**} of A^{**} , and thus δ^{**} is inner in A^{**} by the Kadison-Sakai theorem.

In particular, the above problem applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

The **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of Z(A).

Ilja Gogić (University of Zagreb) Derivations on C*-Algebras: A Revisit Bologna, June 13, 2025 28/30

The class of C^* -algebras whose every Glimm ideal is prime includes:

• prime C*-algebras;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation on $M_{\text{loc}}(A)$ lies in $\overline{\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}}_{cb}$.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation on $M_{\text{loc}}(A)$ lies in $\overline{\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}}_{cb}$.

For prime C^* -algebras we also established the following result:

Theorem (G. 2021)

If A is a prime C*-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $\overline{\overline{\mathcal{E\ell}(A)}}_{cb}$ if and only if σ is an inner automorphism of A.

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

On the other hand:

Proposition (G. 2021)

Let A be a separable n-homogeneous C^* -algebra whose primitive spectrum X is locally contractable. Then every Z(M(A))-linear automorphism of A becomes inner when extended to $M_{loc}(A)$. In particular, all elementary automorphisms on $A_n = C(PU(n), \mathbb{M}_n)$ become inner in $M_{loc}(A_n)$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators: Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ consisting of all $a \in B$ such that

$$\mathsf{a}(\mathsf{n}) = \left[egin{array}{cc} \lambda_{\mathsf{n}}(\mathsf{a}) & 0 \ 0 & \lambda_{\mathsf{n}+1}(\mathsf{a}) \end{array}
ight], \quad \mathsf{n} \in \mathbb{N},$$

for some convergent sequence $(\lambda_n(a))_{n\in\mathbb{N}}$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ consisting of all $a \in B$ such that

$$\mathsf{a}(\mathsf{n}) = \left[egin{array}{cc} \lambda_{\mathsf{n}}(\mathsf{a}) & 0 \ 0 & \lambda_{\mathsf{n}+1}(\mathsf{a}) \end{array}
ight], \quad \mathsf{n} \in \mathbb{N},$$

for some convergent sequence $(\lambda_n(a))_{n\in\mathbb{N}}$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Problem

Characterize the class of unital C^* -algebras A with the property that any derivation in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ (or $\overline{\overline{\mathcal{E}\ell(A)}}$) is necessarily inner.