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Throughout this talk A will be a unital C*-algebra with centre Z(A).
By an ideal of A we always mean a closed two-sided ideal of A. We
denote by Id(A) the set of all ideals of A. For each | € Id(A), q; will
denote the quotient map A — A/I.

An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.

The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S:{PePrim(A) : PQQSQ}.

Prim(A) is a compact space which in general satisfies only
To-separation axiom.
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By an ideal of A we always mean a closed two-sided ideal of A. We
denote by Id(A) the set of all ideals of A. For each | € Id(A), q; will
denote the quotient map A — A/I.

An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.

The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S:{PePrim(A) : P;QSQ}.

Prim(A) is a compact space which in general satisfies only
To-separation axiom.

Dauns-Hofmann Theorem (1968): There is a *-isomorphism ®4
from C(Prim(A)) onto Z(A) such that

qap(®a(f)a) = f(P)qp(a)
for all f € C(Prim(A)), a € A and P € Prim(A).
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@ Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z(A). By the Hewitt-Cohen Factorization Theorem, each
Glimm ideal of A is of the form mA for some maximal ideal m of
Z(A). We denote the set of all Glimm ideals of A by Glimm(A).
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ideals of Z(A). By the Hewitt-Cohen Factorization Theorem, each
Glimm ideal of A is of the form mA for some maximal ideal m of
Z(A). We denote the set of all Glimm ideals of A by Glimm(A).

@ Since the sum of two maximal ideals of Z(A) contains the identity, it
follows that the Glimm ideals of A are in one-to-one correspondence
with the maximal ideals of Z(A). Hence, we may equip Glimm(A)
with the topology from the maximal ideal space of Z(A) so that
Glimm(A) becomes a compact Hausdorff space, homeomorphic to
the maximal ideal space of Z(A).
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ideals of Z(A). By the Hewitt-Cohen Factorization Theorem, each
Glimm ideal of A is of the form mA for some maximal ideal m of
Z(A). We denote the set of all Glimm ideals of A by Glimm(A).

Since the sum of two maximal ideals of Z(A) contains the identity, it
follows that the Glimm ideals of A are in one-to-one correspondence
with the maximal ideals of Z(A). Hence, we may equip Glimm(A)
with the topology from the maximal ideal space of Z(A) so that
Glimm(A) becomes a compact Hausdorff space, homeomorphic to
the maximal ideal space of Z(A).

In particular, we can identify Z(A) with the C*-algebra
C(Glimm(A)).

Each primitive ideal of A intersects Z(A) in a maximal ideal, and
therefore contains a (unique) Glimm ideal of A. In particular, Glimm
ideals of A have zero intersection.

For each a € A the norm-function G — ||gg(a)]| is upper
semicontinuous on Glimm(A).
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@ An ideal Q of A is said to be n-primal (n > 2) if whenever /1,... I,
are ideals of A with /; --- [, = {0}, then at least one /; is contained in

Q.
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e By Primal,(A), resp. Primal(A), we denote the set of all n-primal,
resp. all primal ideals of A.
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are ideals of A with /; --- [, = {0}, then at least one /; is contained in
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An ideal Q of A is said to be primal if @ is n-primal for all n > 2.

By Primal,(A), resp. Primal(A), we denote the set of all n-primal,
resp. all primal ideals of A.

It is not difficult to see that every 2-primal ideal contains a unique
Glimm ideal.

Also, one can show that an ideal @ of A is n-primal if and only if for
all Py,..., P, € Prim(A/Q) there exists a net in Prim(A) which
converges simultaneously to each Py,..., P,.

In particular, Prim(A) is Hausdorff if and only if

Glimm(A) = Primaly(A) \ {A} = Prim(A).
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@ A linear map ¢ : A — A is said to be completely bounded if

[¢llct == sup [|¢n]| < oo,
neN

where ¢, : M,(A) — M,(A) denotes the induced map,

¢n(laij]) = [o(ai)]  ([ai ] € Ma(A)).
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[¢lcb := sup [[¢n]| < o0,
neN

where ¢, : M,(A) — M,(A) denotes the induced map,

¢n(laij]) = [oai)] ([aij] € Ma(A)).
@ By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp.

completely bounded) maps on A that preserve the ideals of A (i.e.

o(1) C I for all I € 1d(A)).
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@ By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp.
completely bounded) maps on A that preserve the ideals of A (i.e.
o(1) C I for all I € Id(A)).

o Eery ¢ € IB(A) is Z(A)-(bi)modular. If S is any subset of Id(A) with
zero intersection, then the norm of ¢ can be recovered via the formula

1oll = sup{ll¢s|| : I € S},

where for each | € Id(A), ¢; : A/l — A/l denotes the induced map
qi(a) — qi((a)).
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¢n([ai ]) = [¢(ai)] ([ai ] € Ma(A)).

@ By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp.
completely bounded) maps on A that preserve the ideals of A (i.e.
o(1) C I for all I € Id(A)).

o Eery ¢ € IB(A) is Z(A)-(bi)modular. If S is any subset of Id(A) with
zero intersection, then the norm of ¢ can be recovered via the formula

1oll = sup{ll¢s|| : I € S},

where for each | € Id(A), ¢; : A/l — A/l denotes the induced map
qi(a) — qi((a)).

@ The analogues formula is valid for the cb-norm of maps in ICB(A).

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 5/ 25



C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C*-algebra A.
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C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C*-algebra A.

@ The self-adjoint elements of A are thought of as the observables;
they are the measurable quantities of the system.

@ A state of the system is defined as a positive functional on A (i.e. a
linear map w : A — C such that w(a*a) > 0 for all a € A) with
w(1a) = 1. If the system is in the state w, then w(a) is the expected
value of the observable a.
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C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C*-algebra A.

@ The self-adjoint elements of A are thought of as the observables;
they are the measurable quantities of the system.

@ A state of the system is defined as a positive functional on A (i.e. a
linear map w : A — C such that w(a*a) > 0 for all a € A) with
w(la) = 1. If the system is in the state w, then w(a) is the expected
value of the observable a.

@ Automorphisms correspond to the symmetries, while one-parameter
automorphism groups {®;}:cr describe the reversible time evolution
of the system (in the Heisenberg picture). Their infinitesimal
generators

are the (*-)derivations.
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Definition
A derivation of an algebra A is a linear map 6 : A — A satisfying the
Leibniz rule

I(xy) = d(x)y + xd(y) for all x,y € A.
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Every derivation § of a C*-algebra A satisfies the following properties:
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Definition
A derivation of an algebra A is a linear map 6 : A — A satisfying the
Leibniz rule

I(xy) = d(x)y + xd(y) for all x,y € A.

Basic properties of derivations of C*-algebras
Every derivation § of a C*-algebra A satisfies the following properties:
@ 0 € ICB(A) and ||0||cs = ||9]|-

@ 0 vanishes on Z(A). In particular, commutative C*-algebras do not
admit non-zero derivations.
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Definition
A derivation of an algebra A is a linear map 6 : A — A satisfying the
Leibniz rule

I(xy) = d(x)y + xd(y) for all x,y € A.

Basic properties of derivations of C*-algebras

Every derivation § of a C*-algebra A satisfies the following properties:

o 6 € ICB(A) and [|6]|c = [|0]]-

@ 0 vanishes on Z(A). In particular, commutative C*-algebras do not
admit non-zero derivations.

@ The second adjoint §**, defined on the von Neumann envelope A**, is
also a derivation (of A**), so [|6**||cs = [|6**]| = ||4]l-

Each element a € A induces an inner derivation §, on A given by

da(x) := ax — xa (x € A).

v
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In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.
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Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970
For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem

Which C*-algebras admit only inner derivations?

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem
Which C*-algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:

v

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem
Which C*-algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:

@ von Neumann algebras (Kadison-Sakai, 1966).

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem
Which C*-algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:
@ von Neumann algebras (Kadison-Sakai, 1966).
@ simple C*-algebras (Sakai, 1968).

v

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem
Which C*-algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:
@ von Neumann algebras (Kadison-Sakai, 1966).
@ simple C*-algebras (Sakai, 1968).
o AW*-algebras (Olesen, 1974).

v

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 8 /25



In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a € A let A(a) be the nearest scalar to a. If A is primitive, then

10a]] = 2|2 — A(a)1]|-

Main problem
Which C*-algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:
@ von Neumann algebras (Kadison-Sakai, 1966).
@ simple C*-algebras (Sakai, 1968).
o AW*-algebras (Olesen, 1974).
@ homogeneous C*-algebras (Sproston, 1976).

v
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In particular, by the Kadison-Sakai Theorem, every derivation of A
becomes inner in A**.
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In particular, by the Kadison-Sakai Theorem, every derivation of A
becomes inner in A**.

For separable C*-algebras the problem of innerness of derivations was
completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C*-algebra A the following conditions are equivalent:
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In particular, by the Kadison-Sakai Theorem, every derivation of A
becomes inner in A**. J

For separable C*-algebras the problem of innerness of derivations was

completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C*-algebra A the following conditions are equivalent:
@ A admits only inner derivations.

@ A is a direct sum of a finite number of C*-subalgebras which are
either homogeneous or simple.

@ The set of derivations of A is separable in the operator norm.

On the other hand, for inseparable C*-algebras the main problem remains
widely open, even for the simplest cases such as subhomogeneous
C*-algebras (i.e. C*-algebras which have finite-dimensional irreducible
representations of bounded degree).

v
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Motivation

@ We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.
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which they act in terms of approximation by finite rank maps.
@ On C*-algebras A, however, it is natural to regard two-sided

multiplication maps M, : x — axb (a, b € A) as basic building
blocks (instead of rank one operators).
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Motivation

@ We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

@ On C*-algebras A, however, it is natural to regard two-sided
multiplication maps M, : x — axb (a, b € A) as basic building
blocks (instead of rank one operators).

@ We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

By £4(A) we denote the set of all elementary operators on A. It is easy to
see that every elementary operator on A is completely bounded, with the
following estimate for its cb-norm:

1
2
D Maw|| <> aiar| || bib
i b i i

2
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Hence, if we endow the algebraic tensor product A ® A with the
Haagerup norm

1

1
2 2

||t]|p = inf ’

Z a,-a}“ Z b;-kb,'

we obtain a well-defined contraction

(A A - [ln) = (ELCA), [I - lleb),

Z a; ® bj — Z Mai,bi'

: t:Za,-®b,- ,
i

given by
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Hence, if we endow the algebraic tensor product A ® A with the
Haagerup norm

1

2

: t:Za,-®b,- ,
i

1
2

lt||p := inf ’

Za,-ajf‘ Z b;-kb,'

we obtain a well-defined contraction

(A ® A, H ’ ||h) - (EE(A), H : ||cb)7

Z a; ® b — Z M. b,
i i

Its continuous extension to the completed Haagerup tensor product
A®p Ais known as a canonical contraction from A®j, A to ICB(A)
and is denoted by 0 4.

given by
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Hence, if we endow the algebraic tensor product A ® A with the
Haagerup norm

1

1
2 2

lt||p := inf ‘

Za,-ajf‘ Z b;-kb,'

we obtain a well-defined contraction

(A ® A, H ’ ||h) - (EE(A), ” : ||cb)7

Z a; ® b — Z M. b,
i i

Its continuous extension to the completed Haagerup tensor product
A®p Ais known as a canonical contraction from A®j, A to ICB(A)
and is denoted by 0 4.

t:Za,-®b,- ,
i

given by

If A contains a pair of non-zero orthogonal ideals, then 64 cannot be
injective. Hence, the necessary condition for the injectivity of 64 is
that A must be a prime C*-algebra.
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In fact, we have the following equivalences:

Theorem (Mathieu, 2003)

Ais prime <= 04 is injective <= 0, is isometric.

This result was first proved by Haagerup in 1980 when A = B(H).
Chatterjee and Sinclair in 1992 showed that 64 is isometric if A is a
separably-acting von Neumann factor. Finally, Mathieu extended this
result to all prime C*-algebras.
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In fact, we have the following equivalences:

Theorem (Mathieu, 2003)

A is prime <= 04 is injective <= 04 Is isometric.

This result was first proved by Haagerup in 1980 when A = B(#).
Chatterjee and Sinclair in 1992 showed that 64 is isometric if A is a
separably-acting von Neumann factor. Finally, Mathieu extended this
result to all prime C*-algebras.

If Ais a general C*-algebra, then using the Mathieu's theorem we obtain
the following formula for the cb-norm of 64(t):

10a(t)]lcb = sup{||tP||h : P € Prim(A)},

where for each | € Id(A) by t' we denote the quotient image of t in
(A®pA)/(I @ A+ A®p 1), which is isometrically isomorphic to
(A/l) @4 (A/I) (a result due to Allen, Sinclair and Smith), so that
1"l = ll(qr ® qr)(t)l]-

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 12 /25




If A has a non-trivial centre, one can consider the closed ideal Ju of

A ®p A generated by the tensors of the form az ® b — a® zb

(a,b e A,z e Z(A)) (note that Jy C kerfa), the induced contraction

0% : (A®p A)/Ja — ICB(A), and ask when is 0% is injective or isometric.
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A ®p A generated by the tensors of the form az ® b — a® zb

(a,b e A,z e Z(A)) (note that Jy C kerfa), the induced contraction

0% : (A®p A)/Ja — ICB(A), and ask when is 0% is injective or isometric.

v

Definition

The Banach algebra (A ®p A)/Ja with the quotient norm || - ||z » is known
as the central Haagerup tensor product of A, and is denoted by
A®znA.
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Definition

The Banach algebra (A ®p A)/Ja with the quotient norm || - ||z » is known
as the central Haagerup tensor product of A, and is denoted by
A®znA.

When is 95 isometric or injective?

o Chatterjee and Smith in 1993 first showed that 6% is isometric if A is
a von Neumann algebra or if Prim(A) is Hausdorff.
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Definition

The Banach algebra (A ®yp, A)/Ja with the quotient norm || - ||z is known
as the central Haagerup tensor product of A, and is denoted by
ARz A.

When is 95 isometric or injective?
o Chatterjee and Smith in 1993 first showed that Hi is isometric if A is
a von Neumann algebra or if Prim(A) is Hausdorff.

@ Ara and Mathieu in 1994 showed that Gﬁ is isometric if A is
boundedly centrally closed.
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If A has a non-trivial centre, one can consider the closed ideal J4 of

A ®p A generated by the tensors of the form az ® b — a® zb

(a,be A,z € Z(A)) (note that Js C kerfa), the induced contraction

0% : (A®p A)/Ja — ICB(A), and ask when is 65 is injective or isometric.

v

Definition

The Banach algebra (A ®yp, A)/Ja with the quotient norm || - ||z is known
as the central Haagerup tensor product of A, and is denoted by
ARz A.

When is 95 isometric or injective?
o Chatterjee and Smith in 1993 first showed that Hi is isometric if A is
a von Neumann algebra or if Prim(A) is Hausdorff.

@ Ara and Mathieu in 1994 showed that Gﬁ is isometric if A is
boundedly centrally closed.

o A further generalization was obtained by Somerset in 1998:

v
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Theorem (Somerset, 1998)

(a)
16a(t))lcb = sup{[|t®|l» : Q € Primal(A)}.
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(a)
16a(t))lcb = sup{[|t®|l» : Q € Primal(A)}.

(b) lltllzh = sup{lIt®|ln : G € Glimm(A)}. Hence,

Ja=[{G@hA+A®yG : G < Glimm(A)}.

(c) Q €1d(A) is 2-primal if and only if kers C Q @, A+ A®) Q, so

kerfa = {Q®n A+ A®,Q : Q € Primaly(A)}.
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Theorem (Somerset, 1998)

(a)
16a(t))lcb = sup{[|t®|l» : Q € Primal(A)}.

(b) lltllzh = sup{lIt®|ln : G € Glimm(A)}. Hence,

Ja=[{G@hA+A®yG : G < Glimm(A)}.

(c) Q €1d(A) is 2-primal if and only if kers C Q @, A+ A®) Q, so
kerp = ﬂ{Q QA+ AR, Q : Q € Primaly(A)}.

In particular, 0£ is isometric if every Glimm ideal of A is primal and 05 is
injective if and only if every Glimm ideal of A is 2-primal.
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Finally, Archbold, Somerset and Timoney proved in 2005 that the
primality condition of Glimm ideals of A is also a necessary one for 9}%
being isometric. In particular, the isometry problem of 05 was completely
solved in terms of the ideal structure of A:
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Finally, Archbold, Somerset and Timoney proved in 2005 that the
primality condition of Glimm ideals of A is also a necessary one for 9}%
being isometric. In particular, the isometry problem of 05 was completely
solved in terms of the ideal structure of A:

Theorem (Archbold, Somerset and Timoney, 2005) J

05 is isometric if and only if every Glimm ideal of A is primal.
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Since the derivations of C*-algebras preserve the ideals and are completely
bounded, the approximation procedure by elementary operators in
particular applies to derivations:
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approximation by elementary operators? That is, which derivations of A lie
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in the cb-norm closure E4(A) 7

llja Gogi¢ (TCD) Glasgow, 3rd March 2015 16 / 25



Since the derivations of C*-algebras preserve the ideals and are completely
bounded, the approximation procedure by elementary operators in
particular applies to derivations:

Problem

Which derivations of a C*-algebra A admit a completely bounded

approximation by elementary operators? That is, which derivations of A lie
cb
in the cb-norm closure E4(A) 7

Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations
and the set of all inner derivations of A.
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bounded, the approximation procedure by elementary operators in
particular applies to derivations:

Problem

Which derivations of a C*-algebra A admit a completely bounded

approximation by elementary operators? That is, which derivations of A lie
cb
in the cb-norm closure E4(A) 7

Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations
and the set of all inner derivations of A.

@ Since each inner derivation is an elementary operator (of length 2) on
cb

A, EL(A) includes the cb-corm closure of Inn(A).
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Since the derivations of C*-algebras preserve the ideals and are completely
bounded, the approximation procedure by elementary operators in
particular applies to derivations:

Problem

Which derivations of a C*-algebra A admit a completely bounded

approximation by elementary operators? That is, which derivations of A lie
cb
in the cb-norm closure E4(A) 7

Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations
and the set of all inner derivations of A.

@ Since each inner derivation is an elementary operator (of length 2) on
cb
A, EL(A) includes the cb-corm closure of Inn(A).
@ Since the cb-norm of (inner) derivations coincides with their operator

norm, the cb-norm closure of Inn(A) coincides with the operator

norm closure of Inn(A). We denote this closure by Inn(A).
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Problem (G., 2013)

Does every C*-algebra satisfy the condition

Der(A) N ZU(A) " = Ton(A)?
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Problem (G., 2013)

Does every C*-algebra satisfy the condition

cb

Der(A)NEL(A) = Inn(A)?

In many cases the set Inn(A) is closed in the operator norm. However, this
is not always true.

V.
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Problem (G., 2013)

Does every C*-algebra satisfy the condition

cb

Der(A)NEL(A) = Inn(A)?

In many cases the set Inn(A) is closed in the operator norm. However, this
is not always true.

v

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if
and only if A has a finite connecting order.
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Connecting order of a C*-algebra

The connecting order of a C*-algebra is a constant in NU {co} arising
from a certain graph structure on the primitive spectrum Prim(A):
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@ Two primitive ideals P, Q of A are said to be adjacent, if P and Q

cannot be separated by disjoint open subsets of Prim(A).
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Connecting order of a C*-algebra

The connecting order of a C*-algebra is a constant in NU {co} arising
from a certain graph structure on the primitive spectrum Prim(A):

@ Two primitive ideals P, Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

@ A path of length n from P to @ is a sequence of points

P =Py, P1,...,P,= Q such that P;_; is adjacent to P; for all
1<i<n.
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Connecting order of a C*-algebra
The connecting order of a C*-algebra is a constant in NU {co} arising
from a certain graph structure on the primitive spectrum Prim(A):

@ Two primitive ideals P, Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

@ A path of length n from P to @ is a sequence of points
P =Py, P1,...,P,= Q such that P;_; is adjacent to P; for all

1<i<n.
@ The distance d(P, Q) from P to Q is defined as follows:
> d(P,P) = 1.

> If P # Q and there exists a path from P to Q, then d(P, Q) is equal
to the minimal length of a path from P to Q.
> If there is no path from P to Q, d(P, Q) := oc.
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Connecting order of a C*-algebra

The connecting order of a C*-algebra is a constant in NU {co} arising
from a certain graph structure on the primitive spectrum Prim(A):

@ Two primitive ideals P, Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

@ A path of length n from P to @ is a sequence of points
P =Py, P1,...,P,= Q such that P;_; is adjacent to P; for all

1<i<n.
@ The distance d(P, Q) from P to Q is defined as follows:
> d(P,P) = 1.

> If P # Q and there exists a path from P to Q, then d(P, Q) is equal
to the minimal length of a path from P to Q.
> If there is no path from P to Q, d(P, Q) := oc.

@ The connecting order Orc(A) of A is then defined by

Orc(A) :=sup{d(P, Q) : P, Q € Prim(A) such that d(P, Q) < oo}.
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Theorem (G., 2013)

———ch

The equality Der(A) N EY(A) = Inn(A) holds true for all C*-algebras A
in which every Glimm ideal is prime.
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Theorem (G., 2013)

—_———¢C

The equality Der(A) N EY(A) = Inn(A) holds true for all C*-algebras A
in which every Glimm ideal is prime.

Proof
@ Using Somerset’s Theorem from 1998, 8,4 is isometric in our case, so

———cb
EU(A)  =Tm0a.
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Theorem (G., 2013)

—_———¢C

The equality Der(A) N EY(A) = Inn(A) holds true for all C*-algebras A
in which every Glimm ideal is prime.

Proof
@ Using Somerset’s Theorem from 1998, 8,4 is isometric in our case, so

———cb
EU(A)  =Tm0a.

@ Fix a derivation § € Der(A) NIm 64 and choose a tensor t € AR, A
such that § = 04(t).

v
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Theorem (G., 2013)

The equality Der(A) N SK(A) = Inn(A) holds true for all C*-algebras A
in which every Glimm ideal is prime.

Proof
@ Using Somerset’s Theorem from 1998, 8,4 is isometric in our case, so

———cb

@ Fix a derivation ¢ € Der(A) NIm#4 and choose a tensor t € A®y A
such that § = 0a(t).

@ First assume that A is prime. In this case, we can use Mathieu's
Theorem to identify Im 64 with A ®p A and then work inside A ®, A.
Using the Leibniz rule, appropriate decompositions of the tensors (due
to R. Smith) and the partition of unity argument, it is not difficult to
see that § is inner in this (prime) case.

v
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Proof (continuation)
@ The next step is to show that the norm function G — ||| is upper
semicontinuous on Glimm(A). To do this, we first fix some
G € Glimm(A). It is easy to see that the following diagram

AonA  —A ICB(A)

qG®QGl ch

(A/G) ®h (A/G) —2, ICB(A/G)

commutes, where Q¢ : ICB(A) — ICB(A/G) is a map given by
Q:c(9)(gc(a)) = ge(#(a)) (¢ € ICB(A), a € A), so that

y
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Proof (continuation)

@ The next step is to show that the norm function G — ||| is upper
semicontinuous on Glimm(A). To do this, we first fix some
G € Glimm(A). It is easy to see that the following diagram

AonA  —A ICB(A)

qc®qcl ch

(A/G) ®h (A/G) —2, ICB(A/G)

commutes, where Q¢ : ICB(A) — ICB(A/G) is a map given by
Q:c(9)(gc(a)) = ge(#(a)) (¢ € ICB(A), a € A), so that

106l = locller = 18a/c((a6 ® a6)(t))llcv = I(96 ® g6)(t)ln
= ||t||p-

Here we used again the Mathieu's Theorem (A/G is prime by
assumption).

v
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Proof (continuation)

@ Using the fact that the norm functions G — ||gg(a)|| (a € A) are

upper semicontinuous on Glimm(A), one can now show that the map

G + ||t€]|, is also upper semicontinuous on Glimm(A).
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Proof (continuation)

@ Using the fact that the norm functions G — ||gg(a)|| (a € A) are
upper semicontinuous on Glimm(A), one can now show that the map
G + ||t€]|, is also upper semicontinuous on Glimm(A).

@ The next step is to show that ¢ can be approximated in the (cb-)norm
by inner derivations. Indeed, let £ > 0. Since each Glimm quotient
A/G is prime, by the first part of the proof, the upper semicontinuity
of the norm function G + ||0¢|| = ||t®||» and a simple compactness
argument, we obtain a finite number of elements {a;} and a finite
open cover {U;} of Glimm(A) such that ||(d¢ — (d4,) || < € for all
G € U;. Choose a partition of unity {f;} of Glimm(A) subordinated
to the cover {U;} and define a:=) . fia; € A (here we used the
identification C(Glimm(A)) = Z(A)). Using the fact that Glimm
ideals have zero intersection, it is easy to verify that ||§ — d,]| < €.
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Proof (continuation)

@ Using the fact that the norm functions G — ||gg(a)|| (a € A) are
upper semicontinuous on Glimm(A), one can now show that the map
G + ||t€]|, is also upper semicontinuous on Glimm(A).

@ The next step is to show that ¢ can be approximated in the (cb-)norm
by inner derivations. Indeed, let £ > 0. Since each Glimm quotient
A/G is prime, by the first part of the proof, the upper semicontinuity
of the norm function G + ||0¢|| = ||t®||» and a simple compactness
argument, we obtain a finite number of elements {a;} and a finite
open cover {U;} of Glimm(A) such that ||(d¢ — (d4,) || < € for all
G € U;. Choose a partition of unity {f;} of Glimm(A) subordinated
to the cover {U;} and define a:=) . fia; € A (here we used the
identification C(Glimm(A)) = Z(A)). Using the fact that Glimm
ideals have zero intersection, it is easy to verify that ||§ — d,]| < €.

@ By the Somerset’'s Theorem from 1993, Inn(A) is (cb-)closed in our
case (since Orc(A) = 1), which completes the proof.
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@ Unfortunately, the presented proof cannot be generalized for some
larger reasonable class of C*-algebras (e.g. for those in which every
Glimm ideal is primal). There are two main obstacles in the proof:
The first one is that we do not know whether each Glimm quotient

A/G admits only inner derivations lying in Im64,5. The second one
———cb
is that for 6 € Der(A) N EY(A) , the function G — [|dg|| does not

need be upper semicontinuous on Glimm(A), even if ¢ is already inner.
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@ Unfortunately, the presented proof cannot be generalized for some
larger reasonable class of C*-algebras (e.g. for those in which every
Glimm ideal is primal). There are two main obstacles in the proof:
The first one is that we do not know whether each Glimm quotient

A/G admits only inner derivations lying in Im64,5. The second one
———cb
is that for 6 € Der(A) N EY(A) , the function G — [|dg|| does not

need be upper semicontinuous on Glimm(A), even if ¢ is already inner.

@ Indeed, let A be a C*-algebra consisting of all functions
a € C([0,1],M2(C)) such that a(1) is a diagonal matrix. Then
Glimm(A) is canonically homeomorphic to [0, 1] and let us denote this
correspondence by x <> G(x). Further, each Glimm ideal of A is
primal. On the other hand, let a be an element of A defined by
a(x) := ey 1 for all x € [0,1] (where €71 is the matrix unit which has
a non-zero entry 1 at (1,1)-position) and let § := d,. By Stampfli's
formula we have [[§g(,|| =1 for all 0 < x < 1 and [|0g(1)|| = 0 (since
A/G(1) = C & C). Therefore, the function G — ||d¢|| is not upper
semicontinuous on [0, 1] = Glimm(A).
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Remark

The class of C*-algebras in which every Glimm ideal is prime is fairly large.
It includes:
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Remark
The class of C*-algebras in which every Glimm ideal is prime is fairly large.
It includes:

@ Prime C*-algebras.

@ (C*-algebras with Hausdorff primitive spectrum.

@ Quotients of AW*-algebras.

@ Local multiplier algebras.

By an elementary derivation on a C*-algebra A we mean every
derivation on A which is also an elementary operator on A.
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Remark

The class of C*-algebras in which every Glimm ideal is prime is fairly large.

It includes:

@ Prime C*-algebras.
@ (C*-algebras with Hausdorff primitive spectrum.
@ Quotients of AW*-algebras.

@ Local multiplier algebras.

By an elementary derivation on a C*-algebra A we mean every
derivation on A which is also an elementary operator on A.

Question
Does there exist a C*-algebra A which admits an outer elementary
derivation?
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Remark

The class of C*-algebras in which every Glimm ideal is prime is fairly large.

It includes:

@ Prime C*-algebras.
@ (C*-algebras with Hausdorff primitive spectrum.
@ Quotients of AW*-algebras.

@ Local multiplier algebras.

By an elementary derivation on a C*-algebra A we mean every
derivation on A which is also an elementary operator on A.

Question

Does there exist a C*-algebra A which admits an outer elementary
derivation?

Motivated by our previous discussion, it is natural to start looking for
possible examples in the class of C*-algebras with Orc(A) = oo.
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Example (G., 2010)

Let A be a C*-algebra consisting of all elements a € C([0, o], M2(C))

such that ()
An(a 0
a =]
M=1"0" ru(a)

for some convergent sequence (A\,(a)) of complex numbers. Then:

(n €N),
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Let A be a C*-algebra consisting of all elements a € C([0, o], M2(C))
such that ()
An(a 0
a(n) =
M=1"0" ru(a)
for some convergent sequence (A,(a)) of complex numbers. Then:
@ d(ker A1, ker A,) = n for all n € N. In particular, Orc(A) = occ.

(n €N),
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a(n) =
M=1"0" ru(a)
for some convergent sequence (A,(a)) of complex numbers. Then:
@ d(ker A1, ker A,) = n for all n € N. In particular, Orc(A) = occ.

@ EL(A) is closed in the cb-norm.
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Example (G., 2010)

Let A be a C*-algebra consisting of all elements a € C([0, o], M2(C))
such that Aa) 0
A=1"0" A(a)
for some convergent sequence (A,(a)) of complex numbers. Then:
@ d(ker A1, ker A,) = n for all n € N. In particular, Orc(A) = occ.
@ EL(A) is closed in the cb-norm.

In particular, A admits outer elementary derivations.
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Example (G., 2010)

Let A be a C*-algebra consisting of all elements a € C([0, o], M2(C))
such that

An(a) 0
A=1"0" A(a)
for some convergent sequence (\,(a)) of complex numbers. Then:
@ d(ker A1, ker A,) = n for all n € N. In particular, Orc(A) = occ.
@ E((A) is closed in the cb-norm.

In particular, A admits outer elementary derivations.

(n €N),

More recently, R. Timoney showed that the above C*-algebra A admits
outer derivations 4 of the form § = M, ,, — M}, , for some a,b € A. In
particular A has outer elementary derivations of length 2. Further, this

C*-algebra satisfies Inn(A) = Der(A) N EL(A).
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| end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In
particular, can we for each n > 2 find a C*-algebra A which admits an
(outer) elementary derivation of length n?
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| end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In
particular, can we for each n > 2 find a C*-algebra A which admits an
(outer) elementary derivation of length n?

Problem

Does every unital C*-algebra A with Orc(A) = oo admit an outer
elementary derivation?

Problem

When do we have Inn(A) C E4(A)?

Problem

What can be said about Der(A) N E¢(A)?

llja Gogi¢ (TCD) Glasgow, 3rd March 2015

25 /25



	Preliminaries
	Derivations of C*-algebras
	Canonical contraction a : A h A ICB(A)
	CB-norm approximation of derivations by elementary operators

