Derivations and local multipliers of C^*-algebras

Ilja Gogić

Department of Mathematics, University of Zagreb

Great Plains Operator Theory Symposium 2014
Kansas State University
Manhattan, Kansas, USA
May 27-31, 2014
Definition

A **derivation** of an algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$
Definition

A **derivation** of an algebra A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Some properties of derivations of C^*-algebras

If A is a C^*-algebra, then every derivation δ of A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|_\text{op}$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
- δ vanishes on the centre of A (i.e. $\delta(z) = 0$ for all $z \in Z(A)$). In particular, commutative C^*-algebras don't admit non-zero derivations.
- δ extends uniquely and under preservation of the norm to a derivation of $M(A)$ (the multiplier algebra of A).
Definition

A **derivation** of an algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Some properties of derivations of C^*-algebras

If A is a C^*-algebra, then every derivation δ of A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
Definition

A **derivation** of an algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Some properties of derivations of C^*-algebras

If A is a C^*-algebra, then every derivation δ of A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
Definition

A **derivation** of an algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Some properties of derivations of C^*-algebras

If A is a C^*-algebra, then every derivation δ of A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
- δ vanishes on the centre of A (i.e. $\delta(z) = 0$ for all $z \in Z(A)$). In particular, commutative C^*-algebras don’t admit non-zero derivations.
Definition

A derivation of an algebra A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad \text{for all } x, y \in A.$$

Some properties of derivations of C^*-algebras

If A is a C^*-algebra, then every derivation δ of A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. $\delta(I) \subseteq I$ for every ideal I of A).
- δ vanishes on the centre of A (i.e. $\delta(z) = 0$ for all $z \in Z(A)$). In particular, commutative C^*-algebras don’t admit non-zero derivations.
- δ extends uniquely and under preservation of the norm to a derivation of $M(A)$ (the multiplier algebra of A).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem: Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- σ-unital continuous-trace C^*-algebras (Akemann-Elliott-Pedersen-Tomiyama, 1976).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- σ-unital continuous-trace C^*-algebras (Akemann-Elliott-Pedersen-Tomiyama, 1976).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \rightarrow A$ given by

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an \textit{inner derivation} if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by
$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem
Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:
- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
If A is a C^*-subalgebra of a C^*-algebra B, then each element $a \in B$ which derives A (i.e. $ax - xa \in A$, for all $x \in A$) implements a derivation $\delta_a : A \to A$ given by
\[
\delta_a(x) := ax - xa.
\]

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^*-algebras admit only inner derivations?

Some classes of C^*-algebras which admit only inner derivations:

- simple C^*-algebras (Sakai, 1968).
- AW^*-algebras (Olesen, 1974).
- σ-unital continuous-trace C^*-algebras (Akemann-Elliott-Pedersen-Tomiyama, 1976).
Moreover, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C^*-algebra, then A admits only inner derivations if and only if $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^*-algebra, and A_2 is a direct sum of simple C^*-algebras.
Moreover, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C^*-algebra, Then A admits only inner derivations if and only if $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^*-algebra, and A_2 is a direct sum of simple C^*-algebras.

On the other hand, for inseparable C^*-algebras the problem of innerness of derivations remains widely open, even for the simplest cases such as subhomogeneous C^*-algebras (i.e. C^*-algebras which have finite-dimensional irreducible representations of bounded degree).
If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.
If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\text{Id}_{\text{ess}}(A)$ of all essential ideals of A.
If \(I \) and \(J \) are two essential ideals of \(A \) such that \(J \subseteq I \), then there is an embedding \(M(I) \hookrightarrow M(J) \).

In this way, we obtain a directed system of \(C^* \)-algebras with isometric connecting morphisms, where \(I \) runs through the directed set \(\text{Id}_{ess}(A) \) of all essential ideals of \(A \).

Definition

The local multiplier algebra of \(A \) is the direct limit \(C^* \)-algebra

\[
M_{loc}(A) := (C^* \rightarrow) \lim \{ M(I) : I \in \text{Id}_{ess}(A) \}.
\]
If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^*-algebras with isometric connecting morphisms, where I runs through the directed set $\text{Id}_{\text{ess}}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C^*-algebra

$$M_{\text{loc}}(A) := (C^*-) \lim \{ M(I) : I \in \text{Id}_{\text{ess}}(A) \}.$$

Iterating the construction of $M_{\text{loc}}(A)$, one obtains the following tower of C^*-algebras which, a priori, does not have the largest element:

$$A \subseteq M_{\text{loc}}(A) \subseteq M^{(2)}_{\text{loc}}(A) \subseteq \cdots \subseteq M^{(n)}_{\text{loc}}(A) \subseteq \cdots,$$

where $M^{(2)}_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A))$, $M^{(3)}_{\text{loc}}(A) = M_{\text{loc}}(M^{(2)}_{\text{loc}}(A))$, etc.
Example

If A is simple, then obviously $M_{10c}(A) = M(A)$.

If A is an AW^*-algebra, then $M_{10c}(A) = A$.

If $A = C_0(X)$ is a commutative C^*-algebra, then $M_{10c}(A)$ is a commutative AW^*-algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

Ilja Gogić (University of Zagreb)
Example
If A is simple, then obviously $M_{loc}(A) = M(A)$.

Example
If A is an AW^*-algebra, then $M_{loc}(A) = A$.
Example
If A is simple, then obviously $M_{\text{loc}}(A) = M(A)$.

Example
If A is an AW^*-algebra, then $M_{\text{loc}}(A) = A$.

Example
If $A = C_0(X)$ is a commutative C^*-algebra, then $M_{\text{loc}}(A)$ is a commutative AW^*-algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.
The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the ”C^*-algebra of essential multipliers”).
The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the ”C^*-algebra of essential multipliers”).

Every derivation of a C^*-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$.
The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the ” C^*-algebra of essential multipliers”).

Every derivation of a C^*-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{\text{loc}}(A)$.

Theorem (Pedersen, 1978)

Every derivation δ of a separable C^*-algebra A is implemented by a local multiplier (i.e. δ becomes inner when extended to a derivation of $M_{\text{loc}}(A)$).
The concept of the local multiplier algebra was introduced by G. Pedersen in 1978 (he called it the "C^*-algebra of essential multipliers").

Every derivation of a C^*-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$.

Theorem (Pedersen, 1978)

Every derivation δ of a separable C^-algebra A is implemented by a local multiplier (i.e. δ becomes inner when extended to a derivation of $M_{loc}(A)$).*

Moreover, it suffices to assume that every essential closed ideal of A is σ-unital. In particular, Pedersen’s result entails Sakai’s theorem that every derivation of a simple unital C^*-algebra is inner.
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, only an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, only an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:
Since $M_{loc}(A) = M(A)$ if A is simple, and $M_{loc}(A) = A$ if A is an AW^*-algebra, only an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{loc}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{loc}(A)$ inner?
Since $M_{\text{loc}}(A) = M(A)$ if A is simple, and $M_{\text{loc}}(A) = A$ if A is an AW^*-algebra, only an affirmative answer in the inseparable case would cover, extend and unify the results that all derivations of simple C^*-algebras and AW^*-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\text{loc}}(A)$

If A is an arbitrary C^*-algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

Stability problem of $M_{\text{loc}}(A)$

Is $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$ for every C^*-algebra A?
There is another important characterisation of $M_{\text{loc}}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^*-algebra A, let us denote by $I(A)$ its injective envelope as introduced by Hamana in 1979. $I(A)$ is not an injective object in the category of C^*-algebras and $*$-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \rightarrow I(A)$ has a completely positive extension $\tilde{\phi} : F \rightarrow I(A)$.

However, it turns out that (nevertheless) $I(A)$ is a C^*-algebra canonically containing A as a C^*-subalgebra. Moreover, $I(A)$ is monotone complete, so in particular, $I(A)$ is an AW^*-algebra.
There is another important characterisation of $M_{\text{loc}}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^*-algebra A, let us denote by $I(A)$ its \textbf{injective envelope} as introduced by Hamana in 1979.

However, it turns out that (nevertheless) $I(A)$ is a C^*-algebra canonically containing A as a C^*-subalgebra. Moreover, $I(A)$ is monotone complete, so in particular, $I(A)$ is an AW^*-algebra.

\textbf{Theorem (Hamana, 1981)} All AW^*-algebras of type I are injective.
There is another important characterisation of $M_{\text{loc}}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^*-algebra A, let us denote by $I(A)$ its **injective envelope** as introduced by Hamana in 1979.

$I(A)$ is not an injective object in the category of C^*-algebras and $*$-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \to I(A)$ has a completely positive extension $\tilde{\phi} : F \to I(A)$.
There is another important characterisation of $M_{\text{loc}}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^*-algebra A, let us denote by $I(A)$ its injective envelope as introduced by Hamana in 1979.

$I(A)$ is not an injective object in the category of C^*-algebras and $*$-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \rightarrow I(A)$ has a completely positive extension $\tilde{\phi} : F \rightarrow I(A)$.

However, it turns out that (nevertheless) $I(A)$ is a C^*-algebra canonically containing A as a C^*-subalgebra. Moreover, $I(A)$ is monotone complete, so in particular, $I(A)$ is an AW^*-algebra.
There is another important characterisation of $M_{loc}(A)$, which was first obtained by Frank and Paulsen in 2003.

For a C^*-algebra A, let us denote by $I(A)$ its injective envelope as introduced by Hamana in 1979.

$I(A)$ is not an injective object in the category of C^*-algebras and $*$-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \to I(A)$ has a completely positive extension $\tilde{\phi} : F \to I(A)$.

However, it turns out that (nevertheless) $I(A)$ is a C^*-algebra canonically containing A as a C^*-subalgebra. Moreover, $I(A)$ is monotone complete, so in particular, $I(A)$ is an AW^*-algebra.

Theorem (Hamana, 1981)

All AW-algebras of type I are injective.*
Theorem (Frank and Paulsen, 2003)

Under this embedding of \(A \) into \(I(A) \), \(M_{\text{loc}}(A) \) is the norm closure of the set of all \(x \in I(A) \) which act as a multiplier on some \(l \in \text{Id}_{\text{ess}}(A) \), i.e.

\[
M_{\text{loc}}(A) = \left(\bigcup_{l \in \text{Id}_{\text{ess}}(A)} \{ x \in I(A) : xl + lx \subseteq l \} \right)
\]

Using this result and the fact that \(I(M_{\text{loc}}(A)) = I(A) \), we obtain the following sequence of inclusions of \(C^* \)-algebras:

\[
A \subseteq M_{\text{loc}}(A) \subseteq M(2)_{\text{loc}}(A) \subseteq \cdots \subseteq A \subseteq I(A)
\]

where \(A \) is the regular monotone completion of \(A \).

Difficult problem

When is \(M_{\text{loc}}(A) = I(A) \), or at least \(M_{\text{loc}}(A) = A \)?
Theorem (Frank and Paulsen, 2003)

Under this embedding of A into $I(A)$, $M_{\text{loc}}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $l \in \text{Id}_{\text{ess}}(A)$, i.e.

$$M_{\text{loc}}(A) = \left(\bigcup_{l \in \text{Id}_{\text{ess}}(A)} \{ x \in I(A) : xl + lx \subseteq l \} \right)^{=}$$

Using this result and the fact that $I(M_{\text{loc}}(A)) = I(A)$, we obtain the following sequence of inclusions of C^*-algebras:

$$A \subseteq M_{\text{loc}}(A) \subseteq M_{\text{loc}}^{(2)}(A) \subseteq \cdots \subseteq \overline{A} \subseteq I(A).$$

where \overline{A} is the regular monotone completion of A.
Theorem (Frank and Paulsen, 2003)

Under this embedding of A into $I(A)$, $M_{\text{loc}}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $l \in \text{Id}_{\text{ess}}(A)$, i.e.

\[M_{\text{loc}}(A) = \left(\bigcup_{l \in \text{Id}_{\text{ess}}(A)} \{ x \in I(A) : xl + lx \subseteq l \} \right) = \]

Using this result and the fact that $I(M_{\text{loc}}(A)) = I(A)$, we obtain the following sequence of inclusions of C^*-algebras:

\[A \subseteq M_{\text{loc}}(A) \subseteq M_{\text{loc}}^{(2)}(A) \subseteq \cdots \subseteq \overline{A} \subseteq I(A). \]

where \overline{A} is the regular monotone completion of A.

Difficult problem

When is $M_{\text{loc}}(A) = I(A)$, or at least $M_{\text{loc}}(A) = \overline{A}$?
Back to Pedersen’s questions, we have the following partial answers:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C^*-algebra such that $\text{Prim}(A) (= \text{the primitive ideal space of } A)$ contains a dense $G_δ$ subset of closed points, then $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$. Moreover, in this case $M_{\text{loc}}(A)$ has only inner derivations.
Back to Pedersen’s questions, we have the following partial answers:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C^*-algebra such that Prim(A) (= the primitive ideal space of A) contains a dense $G_δ$ subset of closed points, then $M_{loc}(A) = M_{loc}(A)$. Moreover, in this case $M_{loc}(A)$ has only inner derivations.

Theorem (G., 2013)

If all irreducible representations of a C^*-algebra A are finite-dimensional, then $M_{loc}(A)$ is a finite or countable direct product of C^*-algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW*-algebra of type I in this case, so $M_{loc}(A) = M_{loc}^{(2)}(A) = I(A)$ and $M_{loc}(A)$ admits only inner derivations.
We also have the following criterion for innerness of derivations of certain class of C^*-algebras

Theorem (G., 2013)

Let A be a unital C^*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^n a_i x b_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$.

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes all prime C^*-algebras, C^*-algebras with Hausdorff primitive spectrum, quotients of AW^*-algebras, and local multiplier algebras. In particular, if there exists a C^*-algebra A such that $M_{loc}(A)$ admits an outer derivation δ, then δ cannot be approximated by elementary operators in the cb-norm.
We also have the following criterion for innerness of derivations of certain class of C^*-algebras

Theorem (G., 2013)

Let A be a unital C^*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^{n} a_i xb_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$.

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes all prime C^*-algebras, C^*-algebras with Hausdorff primitive spectrum, quotients of AW^*-algebras, and local multiplier algebras.
We also have the following criterion for innerness of derivations of certain class of C^*-algebras

Theorem (G., 2013)

Let A be a unital C^*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^{n} a_i x b_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$.

The class of C^*-algebras in which every Glimm ideal is prime is fairly large. It includes all prime C^*-algebras, C^*-algebras with Hausdorff primitive spectrum, quotients of AW^*-algebras, and local multiplier algebras.

In particular, if there exists a C^*-algebra A such that $M_{\text{loc}}(A)$ admits an outer derivation δ, then δ cannot be approximated by elementary operators in the cb-norm.
On the other hand, the stability problem of $M_{\text{loc}}(A)$ has a negative solution:

The first class of examples of C^*-algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{\text{loc}}(A)^{(2)} \neq M_{\text{loc}}(A)$.

Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^*-algebra $C([0,1]) \otimes K$ also fails to satisfy $M_{\text{loc}}(A)^{(2)} = M_{\text{loc}}(A)$.

Moreover, Ara and Mathieu (2011) showed that whenever X is a perfect, second countable locally compact Hausdorff space, and $A = C_0(X) \otimes B$ for some non-unital separable simple C^*-algebra B, then $M_{\text{loc}}(A)^{(2)} \neq M_{\text{loc}}(A)$.
On the other hand, the stability problem of $M_{\text{loc}}(A)$ has a negative solution:

- The first class of examples of C^*-algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{\text{loc}}^{(2)}(A) \neq M_{\text{loc}}(A)$.
On the other hand, the stability problem of $M_{\text{loc}}(A)$ has a negative solution:

- The first class of examples of C^*-algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{\text{loc}}^{(2)}(A) \neq M_{\text{loc}}(A)$.

- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^*-algebra $C([0, 1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$.
On the other hand, the stability problem of $M_{loc}(A)$ has a negative solution:

- The first class of examples of C^*-algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{loc}^{(2)}(A) \neq M_{loc}(A)$.
- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C^*-algebra $C([0, 1]) \otimes \mathbb{K}$ also fails to satisfy $M_{loc}^{(2)}(A) = M_{loc}(A)$.
- Moreover, Ara and Mathieu (2011) showed that whenever X is a perfect, second countable locally compact Hausdorff space, and $A = C_0(X) \otimes B$ for some non-unital separable simple C^*-algebra B, then $M_{loc}^{(2)}(A) \neq M_{loc}(A)$.
This leads to the following two restatements of the stability problem of $M_{\text{loc}}(A)$:

Problem

When is $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$?
This leads to the following two restatements of the stability problem of $M_{\text{loc}}(A)$:

Problem

When is $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$?

Problem

Whether for each positive integer n there exists a C^*-algebra A such that $M_{\text{loc}}^{(n)}(A) \neq M_{\text{loc}}^{(n+1)}(A)$?
This leads to the following two restatements of the stability problem of $M_{\text{loc}}(A)$:

Problem

When is $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$?

Problem

Whether for each positive integer n there exists a C^*-algebra A such that $M_{\text{loc}}^{(n)}(A) \neq M_{\text{loc}}^{(n+1)}(A)$?

Besides the C^*-algebras A which satisfy $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$, we know that $M_{\text{loc}}^{(3)}(A) = M_{\text{loc}}^{(2)}(A)$ for a certain class of type I C^*-algebras, such as:

- separable C^*-algebras of type I (Somerset, 2000);
- (not necessarily separable) spatial Fell algebras (Argerami, Farenick and Massey, 2010).

Moreover, in these two cases $M_{\text{loc}}^{(2)}(A)$ is a type I AW^*-algebra.
Problem

Is $M_{\text{loc}}^{(2)}(A)$ an AW^*-algebra of type I whenever A is a C^*-algebra of type I?
Problem

Is $M_{\text{loc}}^{(2)}(A)$ an AW^*-algebra of type I whenever A is a C^*-algebra of type I?

Summary

- We have no example in which $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$ and we do not know that every derivation of $M_{\text{loc}}(A)$ is inner.
- We have no example in which $M_{\text{loc}}^{(2)}(A) \neq M_{\text{loc}}(A)$ and we know every derivation of $M_{\text{loc}}(A)$ is inner.
- We have no example in which $M_{\text{loc}}^{(3)}(A) \neq M_{\text{loc}}^{(2)}(A)$.