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Throughout, A will be a C ∗-algebra with the multiplier algebra M(A).

Let IB(A) be the set of all bounded maps φ : A→ A that preserve (closed
two-sided) ideals of A, i.e. φ(I ) ⊆ I for all ideals I of A.

For any ideal I of A, φ induces a map φI : A/I → A/I which sends
a + I to φ(a) + I .

If S is any subset of ideals of A with zero intersection, the norm of φ
can be computed by the formula ‖φ‖ = sup{‖φI‖ : I ∈ S}.

The most prominent class of maps φ ∈ IB(A) are the elementary
operators, i.e. those that can be expressed as finite sums of two-sided
multiplication maps Ma,b : x 7→ axb, where a and b are elements of
M(A).

By TM(A) and E`(A) we denote, respectively, the set of all two-sided
multiplication maps and all elementary operators on A.
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Ilja Gogić (TCD) Two-sided multiplication maps COSy 2015, June 18, 2015 2 / 13



Throughout, A will be a C ∗-algebra with the multiplier algebra M(A).

Let IB(A) be the set of all bounded maps φ : A→ A that preserve (closed
two-sided) ideals of A, i.e. φ(I ) ⊆ I for all ideals I of A.

For any ideal I of A, φ induces a map φI : A/I → A/I which sends
a + I to φ(a) + I .

If S is any subset of ideals of A with zero intersection, the norm of φ
can be computed by the formula ‖φ‖ = sup{‖φI‖ : I ∈ S}.

The most prominent class of maps φ ∈ IB(A) are the elementary
operators, i.e. those that can be expressed as finite sums of two-sided
multiplication maps Ma,b : x 7→ axb, where a and b are elements of
M(A).

By TM(A) and E`(A) we denote, respectively, the set of all two-sided
multiplication maps and all elementary operators on A.
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In fact, elementary operators are completely bounded and∥∥∥∥∥∑
i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

ai ⊗ bi

∥∥∥∥∥
h

, (1)

where ‖ · ‖h is the Haagerup tensor norm on M(A)⊗M(A), i.e.

‖t‖h = inf


∥∥∥∥∥∑

i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

: t =
∑
i

ai ⊗ bi

 .

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

The equality in (1) holds true for all elementary operators φ =
∑

i Mai ,bi if
and only if A is a prime C ∗-algebra.

Remark

If the algebra A is not prime, then the map a⊗ b 7→ Ma,b is not even
injective.
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The length of an elementary operator φ 6= 0 is the smallest positive
integer ` = `(φ) such that φ =

∑`
i=1 Mai ,bi for some ai , bi ∈ M(A). We

also define `(0) = 0.

We write E`k(A) for the set of all φ ∈ E`(A) with `(φ) ≤ k . Thus
E`1(A) = TM(A).

Theorem (Timoney 2003, 2007)

For every φ ∈ E`(A) we have

‖φ‖cb = ‖φ⊗ idM`(φ)
‖ ≤

√
`(φ)‖φ‖.

Corollary

On each set E`k(A) the cb-norm is equivalent to the operator norm.

Ilja Gogić (TCD) Two-sided multiplication maps COSy 2015, June 18, 2015 4 / 13



The length of an elementary operator φ 6= 0 is the smallest positive
integer ` = `(φ) such that φ =

∑`
i=1 Mai ,bi for some ai , bi ∈ M(A). We

also define `(0) = 0.

We write E`k(A) for the set of all φ ∈ E`(A) with `(φ) ≤ k . Thus
E`1(A) = TM(A).

Theorem (Timoney 2003, 2007)

For every φ ∈ E`(A) we have

‖φ‖cb = ‖φ⊗ idM`(φ)
‖ ≤

√
`(φ)‖φ‖.

Corollary

On each set E`k(A) the cb-norm is equivalent to the operator norm.
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Question

Which operators φ ∈ IB(A) can be approximated by elementary operators
in the operator norm?

Theorem (Magajna 2009)

If A is a separable C ∗-algebra A, then E`(A) is operator norm dense in
IB(A) if and only if A can be decomposed as a finite direct sum
A = A1 ⊕ · · · ⊕ An, where each summand Ai is homogeneous with the
finite type property. In particular, in this case we have IB(A) = E`(A).

Remark

Recall that a well-known theorem of Fell and Tomiyama-Takesaki
asserts that for any n-homogeneous C ∗-algebra A with (primitive)
spectrum X there is a locally trivial bundle E over X with fibre Mn

and structure group PU(n) = Aut(Mn) such that A is isomorphic to
the algebra Γ0(E) of sections of E which vanish at infinity.
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Ilja Gogić (TCD) Two-sided multiplication maps COSy 2015, June 18, 2015 5 / 13



Remark (continuation)

Moreover, any two such algebras Ai = Γ0(Ei ) with spectra Xi are
isomorphic if and only if there is a homeomorphism f : X1 → X2 such
that E1

∼= f ∗(E2) as bundles over X1.

An n-homogeneous C ∗-algebra Γ0(E) with spectrum X is said to have
the finite type property if E can be trivialized over some finite open
cover of X .

Theorem (G. 2011)

Let A be a separable C ∗-algebra.

(a) If E`(A) is norm closed, then A is necessarily subhomogeneous and
each homogeneous sub-quotient of A has the finite type property.

(b) The converse is also true if Prim(A) is Hausdorff.

(c) There exists a compact subset X of R and a unital C ∗-subalgebra A
of C (X ,M2) with trivial homogeneous sub-quotients such that E`(A)
is not norm closed.
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Problem

Describe the operator norm closure TM(A).

Lemma (G., Timoney 2015)

Let a, b, c and d be norm-one elements of an operator space V . If

‖a⊗ b − c ⊗ d‖h < ε ≤ 1/9,

then there exists a complex number λ such that |λ| = 1 and

max{‖a− λc‖, ‖b − λd‖} < 9ε.

Corollary

If A is a prime C ∗-algebra, then TM(A) is norm closed.
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Let us now consider what happens when A = C0(X ,Mn), where X is a
locally compact Hausdorff space.

In this case Prim(A) = X (via x ↔ C0(X \ {x},Mn). As usual we
write Ax for A/(C0(X \ {x},Mn) ∼= Mn and qx for the corresponding
quotient map.

IB(A) = E`(A) can be identified with Cb(X ,B(Mn)) by mapping
which sends φ ∈ IB(A) to x 7→ φx = qx ◦ φ.

Notation

IB1(A) := {φ ∈ IB(A) : φx ∈ TM(Ax) for all x ∈ X}.
IBnv

1 (A) := {φ ∈ IB1(A) : φx 6= 0 for all x ∈ X}.

Corollary

If A = C0(X ,Mn), then TM(A) ⊆ IB1(A).

Question

Do we always have TM(A) = IB1(A)?
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Theorem (G., Timoney 2015)

Let A = C0(X ,Mn), where X is a locally compact Hausdorff space.

(a) To every operator φ ∈ IBnv
1 (A) we can associate a complex line

subbundle Lφ of X ×Mn with the property that φ ∈ TM(A) if and
only if Lφ is a trivial bundle.

(b) To every complex line subbundle E of X ×Mn we can associate an
operator φE ∈ IBnv

1 (A) such that LφE ∼= E .

Corollary

If X is a paracompact (locally compact Hausdorff) space such that
H2(X ;Z) = 0 (the second Čech cohomology), then for A = C0(X ,Mn) we
have the inclusion IBnv

1 (A) ⊆ TM(A).
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Example

Let E be the Hopf fibration S1 ↪→ S3 � S2 and let n ≥ 2. We consider S2

as the unit sphere in C2 (where C2 is equipped with the standard euclidian
metric) and we realise S3 ⊂Mn as {z1e11 + z2e12 : |z1|2 + |z2|2 = 1}.
For a local section e : U → S3 of the bundle E (U is an open subset of S2)
and x ∈ X we define φx ∈ E`1(Mn) by

φx(y) := e(x)ye(x)∗ (y ∈Mn).

Then φ ∈ IBnv
1 (A) \ TM(A).

Corollary

If X is a second countable locally compact Hausdorff space, then for
A = C0(X ,Mn) the following conditions are equivalent:

(a) IB1(A) = TM(A).

(b) For every open subset U, each complex line subbundle of U ×Mn is
trival.
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Ilja Gogić (TCD) Two-sided multiplication maps COSy 2015, June 18, 2015 10 / 13



Theorem (G., Timoney 2015)

Let X be a second countable locally compact Hausdorff space and let
A = C0(X ,Mn). For an operator φ ∈ IB(A) the following two conditions
are equivalent:

(a) φ ∈ TM(A).

(b) If U = {x ∈ X : φx 6= 0}, then Lφ|U is trivial on each compact subset
of U.

Definition

A locally trivial fibre bundle F over a locally compact Hausdorff space X is
said to be a phantom bundle if F is not globally trivial, but is trivial on
each compact subset of X .

Corollary

If A = C0(X ,Mn) as above, then TM(A) is not uniformly closed if and
only if there exists an open subset U of X and a phantom complex line
subbundle of U ×Mn.
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Example

If A = C (S2,Mn) (n ≥ 2), then the operator φ defined by the Hopf

fibration shows that in general TM(A) ( IB1(A).

Example

Let X be the Eilenberg-MacLane space K (Q, 1).

The standard model of X is a mapping telescope of the sequence

S1 z−→ S1 z2

−→ S1 z3

−→ · · · .

Applying H1(−;Z) to the levels of this mapping telescope gives the
system

Z ×1−→ Z ×2−→ Z ×3−→ · · · .

The colimit of this system is H1(X ;Z) = Q and all other (integral)
homology is trivial.

By the universal coefficient theorem, each integral cohomology group
of X is trivial except for H2(X ;Z) which is isomorphic to Ext(Q,Z).
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Example

If A = C (S2,Mn) (n ≥ 2), then the operator φ defined by the Hopf

fibration shows that in general TM(A) ( IB1(A).

Example

Let X be the Eilenberg-MacLane space K (Q, 1).

The standard model of X is a mapping telescope of the sequence

S1 z−→ S1 z2

−→ S1 z3

−→ · · · .

Applying H1(−;Z) to the levels of this mapping telescope gives the
system

Z ×1−→ Z ×2−→ Z ×3−→ · · · .

The colimit of this system is H1(X ;Z) = Q and all other (integral)
homology is trivial.

By the universal coefficient theorem, each integral cohomology group
of X is trivial except for H2(X ;Z) which is isomorphic to Ext(Q,Z).
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Example (continuation)

In particular, H2(X ;Z) is non-trivial. Let E be a line bundle defined
by some non-zero class of H2(X ;Z). Then E is a phantom bundle,
since the restriction of E to each finite subcomplex of X is trivial.

Since (the standard model of) X is a 2-complex, E is a direct
summand of a trivial bundle X × C2. Hence, TM(C0(X ,M2)) is not
uniformly closed.

Moreover, Prof. Mladen Bestvina (University of Utah) informed us that
K (Q, 1) is homotopy equivalent to an open subset of R3. As a
consequence of this we get:

Corollary

(a) For any open subset U of R3, TM(C0(U,M2)) is not uniformly closed.

(b) In fact, d = 3 is the smallest possible dimension with the following
property: there exists an open subset U of Rd such that
TM(C0(U,Mn)) is not uniformly closed for some n.

Ilja Gogić (TCD) Two-sided multiplication maps COSy 2015, June 18, 2015 13 / 13



Example (continuation)

In particular, H2(X ;Z) is non-trivial. Let E be a line bundle defined
by some non-zero class of H2(X ;Z). Then E is a phantom bundle,
since the restriction of E to each finite subcomplex of X is trivial.

Since (the standard model of) X is a 2-complex, E is a direct
summand of a trivial bundle X × C2. Hence, TM(C0(X ,M2)) is not
uniformly closed.

Moreover, Prof. Mladen Bestvina (University of Utah) informed us that
K (Q, 1) is homotopy equivalent to an open subset of R3. As a
consequence of this we get:

Corollary

(a) For any open subset U of R3, TM(C0(U,M2)) is not uniformly closed.

(b) In fact, d = 3 is the smallest possible dimension with the following
property: there exists an open subset U of Rd such that
TM(C0(U,Mn)) is not uniformly closed for some n.
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