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C ∗-algebras as noncommutative topology

Definition

A (unital) C ∗-algebra is a complex Banach ∗-algebra A whose norm ‖ · ‖
satisfies the C ∗-identity. More precisely:

A is a Banach algebra with identity over the field C.

A is equipped with an involution, i.e. a map ∗ : A→ A, a 7→ a∗

satisfying the properties:

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.

Norm ‖ · ‖ satisfies the C ∗-identity, i.e.

‖a∗a‖ = ‖a‖2

for all a ∈ A.
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Remark

The C ∗-identity is a very strong requirement. For instance, together with
the spectral radius formula, it implies that the C ∗-norm is uniquely
determined by the algebraic structure: For all a ∈ A we have

‖a‖2 = ‖a∗a‖ = r(a∗a) = sup{|λ| : λ ∈ spec(a∗a)}.

In the category of C ∗-algebras, the natural morphisms are the (unital)
∗-homomorphisms, i.e. the algebra homomorphisms which preserve the
involution and the identity. They are automatically contractive.

Example

Let X be a CH (compact Hausdorff) space and let C (X ) be the set of all
continuous complex-valued functions on X . Then C (X ) becomes a
commutative C ∗-algebra with respect to the pointwise operations,
involution f ∗(x) := f (x), and max-norm ‖f ‖∞ := sup{|f (x)| : x ∈ X}.
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In fact, all unital commutative C ∗-algebras arise in this fashion:

Theorem (Commutative Gelfand-Naimark theorem)

The (contravariant) functor X  C (X ) defines an equivalence of
categories of CH spaces (with continuous maps as morphisms) and
commutative C ∗-algebras (with ∗-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra C (X ),
no information is lost. In fact, X can be recovered from C (X ). Thus,
topological properties of X can be translated into algebraic properties of
C (X ), and vice versa, so the theory of C ∗-algebras is often thought of as
noncommutative topology.
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Basic examples

If H is a Hilbert space, then the algebra B(H) of all bounded linear
operators on H with the operator norm and usual adjoint obeys the
C ∗-identity.

In particular, the matrix algebras Mn(C) over C with the euclidian
norm are C ∗-algebras. Moreover, the finite direct sums of matrix
algebras over C make up all finite-dimensional C*-algebras.

If A C ∗-algebra and X is a CH space, then C (X ,A) becomes a
C ∗-algebra with respect to the pointwise operations and max-norm.

To every locally compact group G , one can associate a C ∗-algebra
C ∗(G ). Everything about the representation theory of G is encoded
in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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Definition

A representation of a C ∗-algebra A is a ∗-homomorphism π : A→ B(H)
for some Hilbert space H. A representation π is said to be irreducible if it
has no nontrivial closed invariant subspaces (i.e. if K is a closed subspace
of H such that π(A)K ⊆ K, then K = {0} or K = H).

Noncommutative Gelfand-Naimark theorem

Every C ∗-algebra admits an isometric representation on some Hilbert
space.

Remark

Because of the previous theorem, C ∗-algebras can be concretely defined to
be norm closed self-adjoint subalgebras of bounded operators on some
Hilbert space H.
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Definition

Let A be C ∗-algebra.

A primitive ideal of A is an ideal which is the kernel of an irreducible
representation of A.

The primitive spectrum of A is the set Prim(A) of primitive ideals
of A equipped with the Jacobson topology: If S is a set of primitive
ideals, its closure is

S :=

P ∈ Prim(A) : P ⊇
⋂
Q∈S

Q

 .

Example

If A = C (X ), let Cx(X ) := {f ∈ C (X ) : f (x) = 0} (x ∈ X ). Then
Prim(C (X )) = {Cx(X ) : x ∈ X}. Moreover, the correspondence
x 7→ Cx(X ) defines a homeomorphism between X and Prim(C (X )).
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Remark

Prim(A) is always a locally compact space. It is compact whenever A
is unital.

If A is separable, Prim(A) is second countable.

However, as a topological space, Prim(A) is in general badly behaved
and may satisfy only the T0-separation axiom.

When a C ∗-algebra A is unital, the Jacobson topology on Prim(A) not
only describes the ideal structure of A, but also allows us to completely
describe the center Z (A) of A:

Dauns-Hofmann theorem; 1968

Let A be a unital C ∗-algebra. For each P ∈ Prim(A), let qP : A→ A/P
be the quotient map. Then there is a ∗-isomorphism ΦA of C (Prim(A))
onto the center Z (A) of A such that

qP(ΦA(f )) = f (P)qP(a)

for all f ∈ C (Prim(A)), a ∈ A and P ∈ Prim(A).
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C (X )-algebras

In the light of noncommutative topology it is natural to try to view a given
unital C ∗-algebra A as a set of sections of some sort of the bundle. For
example, C (X ) is the family of sections of trivial bundle over X .

The natural candidate for the base space X is Prim(A), the primitive
spectrum of A. However, since the topology on Prim(A) can be awkward
to deal with, a natural alternative is to find a compact Hausdorff space X
(which will turn out to be a continuous image of Prim(A)) over which A
fibres in a nice way.

Such algebras are known as C (X )-algebras and were introduced by G.
Kasparov in 1988:

Definition

Suppose that X is a compact Hausdorff space. A unital C ∗-algebra A is
said to be a C (X )-algebra if A is endowed with a unital ∗-homomorphism
ψA from C (X ) to the centre of A.
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Ilja Gogić (University of Zagreb) C(X )-algebras and C.E.F.I.s The 9th Symposium, Beograd 9 / 26



There is a natural connection between C (X )-algebras and upper
semicontinuous C ∗-bundles over X .

Definition

An upper semicontinuous C ∗-bundle is a triple A = (p,A,X ) where A
is a topological space with a continuous open surjection p : A → X,
together with operations and norms making each fibre Ax := p−1(x) into
a C ∗-algebra, such that the following conditions are satisfied:

(A1) The maps C×A → A, A×X A → A, A×X A → A and A → A
given in each fibre by scalar multiplication, addition, multiplication
and involution, respectively, are continuous (A×X A denotes the
Whitney sum over X).

(A2) The map A → R, defined by norm on each fibre, is upper
semicontinuous.

(A3) If x ∈ X and if (ai ) is a net in A such that ‖ai‖ → 0 and p(ai )→ x
in X , then ai → 0x in A (0x denotes the zero-element of Ax).
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If ”upper semicontinuous” in (A2) is replaced by ”continuous”, then we
say that A is a continuous C ∗-bundle.

Example

If A is a C ∗-algebra, then the simplest example of a continuous C ∗-bundle
is the product bundle over X with fibre A,

ε(X ,A) := (π1,X × A,A).

where π1 is a projection on the first coordinate.

By a section of an upper semicontinuous C ∗-bundle A we mean a map
s : X → A such that p(s(x)) = x for all x ∈ X . We denote by Γ(A) the
set of all continuous sections of A. Then Γ(A) becomes a C (X )-algebra
with respect to the natural pointwise operations and sup-norm.
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On the other hand, we have the following important result:

Theorem (Fell & Lee)

For each C (X )-algebra A there exists an upper semicontinuous C ∗-bundle
A over X such that A ∼= Γ(A).

Definition

If all norm functions x 7→ ‖ax‖ (a ∈ A) are continuous on X , we say that
A is a continuous C (X )-algebra. This is equivalent to say that the
associated bundle A is continuous.
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Example

Let D be any unital C ∗-algebra. Then A := C (X ,D) becomes a
continuous C (X )-algebra in a natural way:

ψA(f )(x) := f (x) · 1A (f ∈ C (X )).

In this case, each fibre Ax is easily identified with D.

Example (Degenerate example)

Let A be any unital C ∗-algebra and let us fix a point x0 ∈ X . Then A
becomes a C (X )-algebra via the map

ψA(f ) := f (x0) · 1A (f ∈ C (X )).

In this example, every fibre Ax is zero, except for x = x0, where Ax0 = A.
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Remark

To avoid such pathological examples, we shall always assume that the
∗-homomorphism ψA is injective. Then we may identify C (X ) with the
C ∗-subalgebra ψA(C (X )) of Z (A).

Example

Let X and Y be two CH spaces. If F : Y → X is any continuous function,
then C (Y ) becomes a C (X )-algebra with

ψC(Y )(f ) := f ◦ F .

For each x ∈ X , every fibre C (Y )x is ∗-isomorphic to C (F−1(x)).

C (Y ) is a continuous C (X )-algebra if and only if F is an open map.
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In fact, the previous example is not nearly as specialized as it might seem
at first:

Theorem

Let A be a unital C ∗-algebra and let X be a CH space.

If there exists a continuous map FA : Prim(A)→ X, then A becomes
a C (X )-algebra with

ψA(f ) := ΦA ◦ f ◦ FA (f ∈ C (X )),

where ΦA : C (Prim(A)) ∼= Z (A) is the Dauns-Hofmann isomorphism.

Moreover, every unital C (X )-algebra arises is this way.

A C (X )-algebra A is continuous if end only if the associated map
FA : Prim(A)→ X is open.
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We will be particularly interested in the following classes of C (X )-algebras:

Definition

A unital C (X )-algebra A is said to be:

homogeneous all fibres of A are ∗-isomorphic to the same
finite-dimensional C ∗-algebra.

subhomogeneous if there exists a positive integer N such that every
fibre Ax of A is finite-dimensional with dimAx ≤ N.

Example

C (X ,Mn) is a (continuous) homogeneous C (X )-algebra with fibre
Mn.

Let

A := {f ∈ C ([0, 1],Mn) : f (0) is a diagonal matrix}.

Then A is a (continuous) C ([0, 1])-algebra with A0 = Cn and
Ax = Mn for 0 < x ≤ 1.
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If D is a finite-dimensional C ∗-algebra, recall that A is isomorphic to the
finite direct sums of matrix algebras Mni . We define the rank of D as

r(D) :=
∑
i

ni .

Let A be a unital C (X )-algebra.

A is subhomogeneous if and only if

r(A) := sup{r(Ax) : x ∈ X} <∞.

As in the finite-dimensional case, we call this number as rank of A.

If A is continuous and homogeneous with fibre D, then by an
important result of J. Fell from 1961, A is automatically locally trivial.
This intuitively means that for every point x ∈ X there exists a
compact neighborhood U of x such that the restriction of A on U
looks like C (U,D).
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Definition

Let B ⊆ A be two C ∗-algebras with common identity element. A
conditional expectation (abbreviated C.E.) from A onto B is a
completely positive (c.p.) contraction E : A→ B which satisfies the
following conditions:

E (b) = b for all b ∈ B.

E is BAB -linear, i.e. E (b1ab2) = b1E (a)b2 for all a ∈ A and
b1, b2 ∈ B.

Remark

The C ∗-algebraic conditional expectations are the noncommutative
analogues of classical conditional expectations from probability theory.

Theorem (Tomiyama; 1957)

A map E : A→ B is a C.E. if and only if E is a projection of norm one.
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following conditions:

E (b) = b for all b ∈ B.

E is BAB -linear, i.e. E (b1ab2) = b1E (a)b2 for all a ∈ A and
b1, b2 ∈ B.

Remark

The C ∗-algebraic conditional expectations are the noncommutative
analogues of classical conditional expectations from probability theory.
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Definition

A C.E. E : A→ B is said to be of finite index (abbreviated C.E.F.I.) if
there exists a constant K ≥ 1 such that the map (K · E − idA) : A→ A is
positive.

A first definition for conditional expectations to be of finite index was
given by M. Pimsner and S. Popa in the context of W ∗-algebras
generalizing results of H. Kosaki and V. F. R. Jones.

However, attempts to describe the more general situation of conditional
expectations on C ∗-algebras with arbitrary centers to be ”of finite index”
in some sense(s) went into difficulties. In fact, M. Baillet, Y. Denizeau and
J.-F. Havet showed that even in the case of normal faithful conditional
expectations E on W ∗-algebras M with non-trivial centres, the index value
can be calculated only in situations when there exists a number L ≥ 1 such
that the mapping (L · E − idA) is completely positive.
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However, the following important result resolved this issue, and
consequently justified the given definition for C.E. on general C ∗-algebras
to be of finite index:

Theorem (Frank & Kirchberg; 1998)

For a C.E. E : A→ B the following conditions are equivalent:

(a) There exists K ≥ 1 such that the map K · E − idA is positive.

(b) There exists L ≥ 1 such that the map L · E − idA is c.p.

(c) A becomes a (complete) Hilbert B-module when equipped with the
inner product 〈a1, a2〉 := E (a∗1a2).

Moreover, if

K (E ) := inf{K ≥ 1 : K · E − idA is positive},

L(E ) := inf{L ≥ 1 : L · E − idA is c.p.},

with K (E ) =∞ or L(E ) =∞ if no such number K or L exists, then

K (E ) ≤ L(E ) ≤ bK (E )cK (E ).
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The number K (E ) is sometimes called the weak index of E .

For a unital inclusion A ⊆ B of unital C ∗-algebras we can now introduce
the following constant, which plays an important role in our research:

K (A,B) := inf{K (E ) : E : A→ B is C.E.F.I.},

with K (A,B) =∞, if no such E exists.

Example

Let A be a homogeneous C (X )-algebra C (X ,Mn) and let tr(·) be the
standard trace on Mn. Then

E (f )(x) :=
1

n
tr(f (x))

defines a C.E.F.I. from A onto C (X ). In this case we have
K (A,C (X )) = K (E ) = n.
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Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A branched coverings is an open
continuous surjection σ : Y → X with uniformly bounded number of
pre-images, i.e.

sup
x∈X
|σ−1(x)| <∞.

Problem

Find an equivalent formulation of the existence of a branched covering
σ : Y → X in terms of their associated C ∗-algebras C (X ) i C (Y ).

Theorem (Pavlov & Troitsky; 2011)

A pair (X ,Y ) admits a branched covering σ : Y → X if and only if there
exists a C.E.F.I. E : C (Y )→ C (X ).
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In light of noncommutative topology, A. Pavlov and E. Troitsky introduced
the following definition:

Definition

A noncommutative branched covering is a pair (A,B) consisting of a
C ∗-algebra A and its C ∗-subalgebra B with common identity element,
such that there exists a C.E.F.I. from A onto B.

Reinterpretation in terms of C (X )-algebras

If σ : Y → X is a continuous surjection, then (as already described) C (Y )
becomes a C (X )-algebra via

ψA(f ) = f ◦ σ (f ∈ C (X )).

Then:

σ is an open map if and only if C (Y ) is a continuous C (X )-algebra.

supx∈X |σ−1(x)| <∞ if and only if C (Y ) is a subhomogeneous
C (X )-algebra.
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Therefore, if A is a unital commutative C (X )-algebra, then a pair
(A,C (X )) defines a noncommutative branched covering if and only if A is
a continuous subhomogeneous C (X )-algebra.

Problem

Is the above result also valid for noncommutative C (X )-algebras A?

What can be said about the weak index K (A,C (X ))?

We managed to prove one direction:

Theorem (Blanchard & G.; 2016)

Let A be a unital C (X )-algebra. If a pair (A,C (X )) defines a
noncommutative branched covering, then A is necessarily a continuous
subhomogeneous C (X )-algebra. Moreover, in this case we have
K (A,C (X )) ≥ r(A).
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We also established the partial converse when:

(A) A is a homogeneous C (X )-algebra (our proof essentially relies on the
local triviality of the underlying bundle of A).

(B) A is a subhomogeneous C (X )-algebra of rank 2 (our proof cannot be
generalized for subhomogeneous C (X )-algebras of higher rank).

Moreover, in both this cases the equality K (A,C (X )) = r(A) is achieved.

As a direct consequence of part (A), we get:

Corollary

If a unital C (X )-algebra A admits a C (X )-linear embedding into some
unital continuous homogeneous C (X )-algebra A′, then (A,C (X )) defines a
noncommutative branched covering with K (A,C (X )) ≤ K (A′,C (X )).
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This leads to the following question:

Problem

If a pair (A,C (X )) defines a noncommutative branched covering, is it
possible to embed A as a C (X )-subalgebra of some unital continuous
homogeneous C (X )-algebra?

The answer is (unfortunately) negative. In fact:

We exhibited an example of a continuous C (X )-algebra A with fibres
M2 i C, where X is the Alexandroff compactification of the disjoint
union

⊔∞
n=1 CPn of complex projective n-dimensional spaces, which

does not admit a C (X )-linear embedding into any unital continuous
homogeneous C (X )-algebra.

On the other hand, since A is of rank 2, the part (B) implies that the
pair (A,C (X )) defines a noncommutative branched covering, with
K (A,C (X )) = 2.
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