Elementary Operators and Subhomogeneous C^*-algebras

Ilja Gogić

Department of Mathematics
University of Zagreb

Banach Algebras 2011
August 3–10, University of Waterloo
Ontario, Canada
Contents

1 Introduction

2 Induced contraction θ^Z_A

3 The surjectivity problem of θ_A

4 On equality $\text{Im} \theta_A = E(A)$
Elementary operators

Through this lecture A will be a unital C^*-algebra with center $Z = Z(A)$ and the primitive spectrum $\text{Prim}(A)$ (equipped with the Jacobson topology).
Elementary operators

- Through this lecture A will be a unital C^*-algebra with center $Z = Z(A)$ and the primitive spectrum $\text{Prim}(A)$ (equipped with the Jacobson topology).
- By $\text{Id}(A)$ we denote the set of all ideals of A (by an ideal we mean a closed two-sided ideal) and by $\text{IB}(A)$ (resp. $\text{ICB}(A)$) the set of all bounded (resp. all completely bounded) maps on A that preserve all ideals in $\text{Id}(A)$.
Elementary operators

- Through this lecture A will be a unital C^*-algebra with center $Z = Z(A)$ and the primitive spectrum $\text{Prim}(A)$ (equipped with the Jacobson topology).
- By $\text{Id}(A)$ we denote the set of all ideals of A (by an ideal we mean a closed two-sided ideal) and by $\text{IB}(A)$ (resp. $\text{ICB}(A)$) the set of all bounded (resp. all completely bounded) maps on A that preserve all ideals in $\text{Id}(A)$.
- Note that every $\phi \in \text{IB}(A)$ is Z-(bi)modular and its norm can be computed via the formula

$$\|\phi\| = \sup\{\|\phi_P\| : P \in \text{Prim}(A)\},$$

(1)

where for $J \in \text{Id}(A)$, ϕ_J denotes the induced operator $A/J \to A/J$, $\phi_J : a + J \mapsto \phi(a) + J$.
Elementary operators

- Through this lecture, A will be a unital C^*-algebra with center $Z = Z(A)$ and the primitive spectrum $\text{Prim}(A)$ (equipped with the Jacobson topology).
- By $\text{Id}(A)$ we denote the set of all ideals of A (by an ideal we mean a closed two-sided ideal) and by $\text{IB}(A)$ (resp. $\text{ICB}(A)$) the set of all bounded (resp. all completely bounded) maps on A that preserve all ideals in $\text{Id}(A)$.
- Note that every $\phi \in \text{IB}(A)$ is Z-(bi)modular and its norm can be computed via the formula
\[
\|\phi\| = \sup\{\|\phi_P\| : P \in \text{Prim}(A)\},
\]
where for $J \in \text{Id}(A)$, ϕ_J denotes the induced operator $A/J \to A/J$, $\phi_J : a + J \mapsto \phi(a) + J$.
- The similar formula is valid for the cb-norm of operators in $\text{ICB}(A)$.
The simplest operators which lie in ICB(A) are the two-sided multiplication operators

\[M_{a,b} : x \mapsto axb \quad (a, b \in A). \]
The simplest operators which lie in ICB(A) are the two-sided multiplication operators

\[M_{a,b} : x \mapsto axb \quad (a, b \in A). \]

The finite sums of two-sided multiplication operators are known as elementary operators.
The simplest operators which lie in $\text{ICB}(A)$ are the two-sided multiplication operators

$$M_{a,b} : x \mapsto axb \quad (a, b \in A).$$

The finite sums of two-sided multiplication operators are known as *elementary operators*.

The set of all elementary operators on A is denoted by $E(A)$. Hence, for each $T \in E(A)$ there exists a finite number of elements $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in A$ such that

$$Tx = \left(\sum_{i=1}^{n} M_{a_i, b_i} \right)(x) = \sum_{i=1}^{n} a_i xb_i \quad (x \in A). \quad (2)$$
Canonical contraction θ_A

If $T \in \mathbb{E}(A)$ has a representation (2), it is easy to see that one has the following estimate for its cb-norm:

$$\| T \|_{cb} \leq \left(\sum_{i=1}^{n} a_i a_i^* \right)^{1/2} \left(\sum_{i=1}^{n} b_i^* b_i \right)^{1/2}.$$
Canonical contraction θ_A

- If $T \in E(A)$ has a representation (2), it is easy to see that one has the following estimate for its cb-norm:

$$\|T\|_{cb} \leq \left\| \sum_{i=1}^{n} a_i a_i^* \right\|^{1/2} \left\| \sum_{i=1}^{n} b_i^* b_i \right\|^{1/2}.$$

- Hence, if we endow the algebraic tensor product $A \otimes A$ with the Haagerup norm

$$\|t\|_h := \inf \left\{ \left\| \sum_{i=1}^{n} a_i a_i^* \right\|^{1/2} \left\| \sum_{i=1}^{n} b_i^* b_i \right\|^{1/2} : t = \sum_{i=1}^{n} a_i \otimes b_i \right\},$$

we obtain the well-defined contraction

$$(A \otimes A, \| \cdot \|_h) \to (E(A), \| \cdot \|_{cb}),$$
Canonical contraction θ_A

- given by

$$\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}.$$
Canonical contraction θ_A

- given by
 \[\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}. \]

- Its continuous extension on the completed Haagerup tensor product $A \otimes_h A$ is denoted by θ_A (and this extension is known as a canonical contraction from $A \otimes_h A$ to $\text{ICB}(A)$).
Canonical contraction θ_A

- given by
 \[\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}. \]

- Its continuous extension on the completed Haagerup tensor product $A \otimes_h A$ is denoted by θ_A (and this extension is known as a *canonical contraction* from $A \otimes_h A$ to $ICB(A)$).

- Clearly, the range of θ_A lies in $ICB(A)$.

Ilja Gogić

Elementary Operators and Subhomogeneous C*--algebras
Canonical contraction θ_A

- given by

$$\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}.$$

- Its continuous extension on the completed Haagerup tensor product $A \otimes_h A$ is denoted by θ_A (and this extension is known as a *canonical contraction* from $A \otimes_h A$ to $ICB(A)$).
- Clearly, the range of θ_A lies in $ICB(A)$.
- The two basic questions concerning the contraction θ_A are under which conditions on A is θ_A injective or isometric?
Canonical contraction θ_A

- given by

$$\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}.$$

- Its continuous extension on the completed Haagerup tensor product $A \otimes_h A$ is denoted by θ_A (and this extension is known as a \textit{canonical contraction} from $A \otimes_h A$ to $ICB(A)$).

- Clearly, the range of θ_A lies in $ICB(A)$.

- The two basic questions concerning the contraction θ_A are under which conditions on A is θ_A injective or isometric?

- Clearly, if A contains a pair of non-zero orthogonal ideals then θ_A cannot be injective.
Canonical contraction θ_A

- given by
 \[\sum_{i=1}^{n} a_i \otimes b_i \mapsto \sum_{i=1}^{n} M_{a_i,b_i}. \]

- Its continuous extension on the completed Haagerup tensor product $A \otimes_h A$ is denoted by θ_A (and this extension is known as a canonical contraction from $A \otimes_h A$ to $ICB(A)$).

- Clearly, the range of θ_A lies in $ICB(A)$.

- The two basic questions concerning the contraction θ_A are under which conditions on A is θ_A injective or isometric?

- Clearly, if A contains a pair of non-zero orthogonal ideals then θ_A cannot be injective.

- Hence, a necessary condition for the injectivity of θ_A is that A must be a prime C^*-algebra.
When is θ_A injective or isometric?

The converse of the last statement is also true, in fact in the prime case θ_A is even isometric:
When is θ_A injective or isometric?

The converse of the last statement is also true, in fact in the prime case θ_A is even isometric:

Theorem (Mathieu)

The following conditions are equivalent:

(i) A is prime;

(ii) θ_A is injective;

(iii) θ_A is isometric.
When is θ_A injective or isometric?

The converse of the last statement is also true, in fact in the prime case θ_A is even isometric:

Theorem (Mathieu)

The following conditions are equivalent:

(i) A is prime;
(ii) θ_A is injective;
(iii) θ_A is isometric.

This result was first proved by Haagerup (1980) for the case $A = B(\mathcal{H})$ (\mathcal{H} is a Hilbert space). Chatterjee and Sinclair (1992) showed that θ_A is isometric if A is a separably-acting von Neumann factor. Finally, Mathieu (2003) proved the result for all prime C^*-algebras.
Using Mathieu’s theorem together with the cb-version of formula (1), one obtains the following important formula for the cb-norm of $\theta_A(t)$:

$$\|\theta_A(t)\|_{cb} = \sup \{ \|t^P\|_h : P \in \text{Prim}(A) \},$$

where for $J \in \text{Id}(A)$, t^J denotes the canonical image of t in the quotient algebra $(A \otimes_h A)/(J \otimes_h A + A \otimes_h J)$ (which is isometrically isomorphic to $(A/J) \otimes_h (A/J)$, a result due to Allen, Sinclair and Smith).
Contents

1 Introduction

2 Induced contraction θ^Z_A

3 The surjectivity problem of θ_A

4 On equality $\text{Im} \theta_A = E(A)$
If A has a non-trivial center (so that A is certainly not prime), one can consider the closed ideal J_A of $A \otimes_h A$ generated by the tensors of the form

$$az \otimes b - a \otimes zb \quad (a, b \in A, z \in Z),$$

(note that $J_A \subseteq \ker \theta_A$) and the induced contraction

$$\theta_A^Z : (A \otimes_h A)/J_A \to \text{ICB}(A),$$

and ask whether it is injective or isometric.
If A has a non-trivial center (so that A is certainly not prime), one can consider the closed ideal J_A of $A \otimes_h A$ generated by the tensors of the form

$$az \otimes b - a \otimes zb \quad (a, b \in A, z \in Z),$$

(note that $J_A \subseteq \ker \theta_A$) and the induced contraction

$$\theta^Z_A : (A \otimes_h A)/J_A \rightarrow \text{ICB}(A),$$

and ask whether it is injective or isometric.

Definition

The Banach algebra $(A \otimes_h A)/J_A$ with the quotient norm $\| \cdot \|_{Z,h}$ is known as the central Haagerup tensor product of A, and is denoted by $A \otimes_{Z,h} A$.
Here is a brief historical overview:

- Chatterjee and Smith (1993) first showed that θ^Z_A is isometric if A is a von Neumann algebra or if $\text{Prim}(A)$ is Hausdorff.
When is θ^Z_A isometric or injective?

Here is a brief historical overview:

- Chatterjee and Smith (1993) first showed that θ^Z_A is isometric if A is a von Neumann algebra or if $\text{Prim}(A)$ is Hausdorff.
- Ara and Mathieu (1994) showed that θ^Z_A is isometric if A is boundedly centrally closed.

Elementary Operators and Subhomogeneous C*-algebras
When is θ^Z_A isometric or injective?

Here is a brief historical overview:

- Chatterjee and Smith (1993) first showed that θ^Z_A is isometric if A is a von Neumann algebra or if $\text{Prim}(A)$ is Hausdorff.
- Ara and Mathieu (1994) showed that θ^Z_A is isometric if A is boundedly centrally closed.
- A further generalization was obtained by Somerset (1998):
Theorem (Somerset)

(i) The formula (3) is also valid if we replace $\text{Prim}(A)$ by the larger set $\text{Primal}(A)$. Hence,

$$\|\theta_A(t)\|_{cb} = \sup\{\|t^Q\|_h : Q \in \text{Primal}(A)\}.$$

(ii) \(\|t\|_{Z,h} = \sup\{\|t^G\|_h : G \in \text{Glimm}(A)\} \). Hence,

$$J_A = \bigcap\{G \otimes_h A + A \otimes_h G : G \in \text{Glimm}(A)\}.$$

(iii) $Q \in \text{Id}(A)$ is 2-primal if and only if $\ker \theta_A \subseteq Q \otimes_h A + A \otimes_h Q$, so

$$\ker \theta_A = \bigcap\{Q \otimes_h A + A \otimes_h Q : Q \in \text{Primal}_2(A)\}. \quad (4)$$

Hence, θ_A^Z is isometric if every Glimm ideal of A is primal, and θ_A^Z is injective if and only if every Glimm ideal of A is 2-primal.
After some time, Archbold, Somerset and Timoney (2005) proved that the primality of Glimm ideals of A is also a necessary condition for θ_Z^A to be isometric, so that the isometry problem of θ_Z^A was also solved in terms of the ideal structure of A: \begin{quote} \text{Theorem (Archbold, Somerset and Timoney)} \text{ } \theta_Z^A \text{ is isometric if and only if every Glimm ideal of } A \text{ is primal.} \end{quote}
After some time, Archbold, Somerset and Timoney (2005) proved that the primality of Glimm ideals of A is also a necessary condition for θ_Z^A to be isometric, so that the isometry problem of θ_Z^A was also solved in terms of the ideal structure of A:

Theorem (Archbold, Somerset and Timoney)

θ_Z^A is isometric if and only if every Glimm ideal of A is primal.
Glimm and primal ideals

- Informally, they measure the possible topological pathologies on $\operatorname{Prim}(A)$ ($\operatorname{Prim}(A)$ is non-Hausdorff in general).
Glimm and primal ideals

- Informally, they measure the possible topological pathologies on \(\text{Prim}(A) \) (\(\text{Prim}(A) \) is non-Hausdorff in general).
- By definition, the Glimm ideals of \(A \) are just (proper) closed ideals of \(A \) generated by the maximal ideals of \(Z \).
Glimm and primal ideals

- Informally, they measure the possible topological pathologies on $\text{Prim}(A)$ ($\text{Prim}(A)$ is non-Hausdorff in general).
- By definition, the Glimm ideals of A are just (proper) closed ideals of A generated by the maximal ideals of Z.
- The set of all Glimm ideals of A is denoted by $\text{Glimm}(A)$, and is equipped with the topology from the maximal ideal space of Z, such that $\text{Glimm}(A)$ is a compact Hausdorff space homeomorphic to the maximal ideal space of Z.
Glimm and primal ideals

- Informally, they measure the possible topological pathologies on \(\text{Prim}(A) \) (\(\text{Prim}(A) \) is non-Hausdorff in general).
- By definition, the Glimm ideals of \(A \) are just (proper) closed ideals of \(A \) generated by the maximal ideals of \(Z \).
- The set of all Glimm ideals of \(A \) is denoted by \(\text{Glimm}(A) \), and is equipped with the topology from the maximal ideal space of \(Z \), such that \(\text{Glimm}(A) \) is a compact Hausdorff space homeomorphic to the maximal ideal space of \(Z \).
- Thus, by the Dauns-Hofmann theorem we can identify \(Z \) with the \(\mathcal{C}^* \)-algebra \(C(\text{Glimm}(A)) \) of continuous complex valued functions on \(\text{Glimm}(A) \).
Glimm and primal ideals

- Informally, they measure the possible topological pathologies on \(\text{Prim}(A) \) (\(\text{Prim}(A) \) is non-Hausdorff in general).
- By definition, the Glimm ideals of \(A \) are just (proper) closed ideals of \(A \) generated by the maximal ideals of \(Z \).
- The set of all Glimm ideals of \(A \) is denoted by \(\text{Glimm}(A) \), and is equipped with the topology from the maximal ideal space of \(Z \), such that \(\text{Glimm}(A) \) is a compact Hausdorff space homeomorphic to the maximal ideal space of \(Z \).
- Thus, by the Dauns-Hofmann theorem we can identify \(Z \) with the \(C^* \)-algebra \(C(\text{Glimm}(A)) \) of continuous complex valued functions on \(\text{Glimm}(A) \).
- For \(P \in \text{Prim}(A) \) let \(\phi_A(P) \) be the unique Glimm ideal of \(A \) such that \(\phi_A(P) \subseteq P \). The map \(\phi_A : \text{Prim}(A) \to \text{Glimm}(A) \), \(\phi_A : P \mapsto \phi_A(P) \) is continuous and is known as the complete regularization map.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.
- The ideal Q of A is said to be primal if Q is n-primal for all $n \geq 2$.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.
- The ideal Q of A is said to be primal if Q is n-primal for all $n \geq 2$.
- By $\text{Primal}_n(A)$, resp. $\text{Primal}(A)$, we denote the set of all n-primal, resp. all primal ideals of A.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.
- The ideal Q of A is said to be primal if Q is n-primal for all $n \geq 2$.
- By $\text{Primal}_n(A)$, resp. $\text{Primal}(A)$, we denote the set of all n-primal, resp. all primal ideals of A.
- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.

- The ideal Q of A is said to be primal if Q is n-primal for all $n \geq 2$.

- By $\text{Primal}_n(A)$, resp. $\text{Primal}(A)$, we denote the set of all n-primal, resp. all primal ideals of A.

- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.

- Also, one can show that an ideal Q of A is n-primal if for all $P_1, \ldots, P_n \in \text{Prim}(A/Q)$ there exists a net (P_α) in $\text{Prim}(A)$ which converges to each element of $\{P_1, \ldots, P_n\}$.
On Glimm and primal ideals

- An ideal Q of A is said to be n-primal ($n \geq 2$) if whenever J_1, \ldots, J_n are ideals of A with $J_1 \cdots J_n = \{0\}$, then at least one J_i is contained in Q.
- The ideal Q of A is said to be primal if Q is n-primal for all $n \geq 2$.
- By $\text{Primal}_n(A)$, resp. $\text{Primal}(A)$, we denote the set of all n-primal, resp. all primal ideals of A.
- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.
- Also, one can show that an ideal Q of A is n-primal if for all $P_1, \ldots, P_n \in \text{Prim}(A/Q)$ there exists a net (P_α) in $\text{Prim}(A)$ which converges to each element of $\{P_1, \ldots, P_n\}$.
- Hence, $\text{Prim}(A)$ is Hausdorff if and only if

$$\text{Glimm}(A) = \text{Primal}_2(A) \setminus \{A\} = \text{Prim}(A).$$
1 Introduction

2 Induced contraction θ^Z_A

3 The surjectivity problem of θ_A

4 On equality $\text{Im} \theta_A = E(A)$
On the other hand, in order to understand the structure of operators lying in $\text{Im} \, \theta_A$, Magajna (2009) considered the problem of when $\text{Im} \, \theta_A$ is as large as possible, hence equal to $\text{ICB}(A)$. He obtained the following result:
On the other hand, in order to understand the structure of operators lying in $\text{Im} \, \theta_A$, Magajna (2009) considered the problem of when $\text{Im} \, \theta_A$ is as large as possible, hence equal to $\text{ICB}(A)$. He obtained the following result:

Theorem (Magajna)

Let A be a unital separable C-algebra. Then $\text{Im} \, \theta_A = \text{ICB}(A)$ if and only if A is a finite sum of (unital separable) homogeneous C*-algebras. Moreover, in this case we have $\text{IB}(A) = \text{ICB}(A) = E(A)$.***
Homogeneous C^*-algebras

Recall that (a not necessarily unital) C^*-algebra B is said to be \emph{n-homogeneous} if its irreducible representations are of the same finite dimension n. In this case $X := \text{Prim}(B)$ is a (locally compact) Hausdorff space, so its canonical C^*-bundle \mathcal{B} over X, (whose fibres are just matrix algebras $M_n(\mathbb{C})$) is continuous, and moreover locally trivial (a result due to Fell (1961)).
Homogeneous C^*-algebras

- Recall that (a not necessarily unital) C^*-algebra B is said to be n-homogeneous if its irreducible representations are of the same finite dimension n. In this case $X := \text{Prim}(B)$ is a (locally compact) Hausdorff space, so its canonical C^*-bundle \mathcal{B} over X, (whose fibres are just matrix algebras $M_n(\mathbb{C})$) is continuous, and moreover locally trivial (a result due to Fell (1961)).

- If X admits a finite cover $\{U_j\}$ such that each restriction bundle $\mathcal{B}|_{U_j}$ is trivial as a vector (resp. C^*-bundle) we say that \mathcal{B} (and hence B) is of finite type as a vector bundle (resp. C^*-bundle).
Homogeneous C^*-algebras

Recall that (a not necessarily unital) C^*-algebra B is said to be n-homogeneous if its irreducible representations are of the same finite dimension n. In this case $X := \text{Prim}(B)$ is a (locally compact) Hausdorff space, so its canonical C^*-bundle \mathcal{B} over X, (whose fibres are just matrix algebras $M_n(\mathbb{C})$) is continuous, and moreover locally trivial (a result due to Fell (1961)).

If X admits a finite cover $\{U_j\}$ such that each restriction bundle $\mathcal{B}|_{U_j}$ is trivial as a vector (resp. C^*-bundle) we say that \mathcal{B} (and hence B) is of finite type as a vector bundle (resp. C^*-bundle).

Fortunately, every continuous $M_n(\mathbb{C})$-bundle is of finite type as a vector bundle if and only if it is of finite type as a C^*-bundle (a result due to Phillips (2007)).
Two remarks

- Magajna’s theorem is also valid in a non-unital case, but then θ_A is defined on $M(A) \otimes_h M(A)$, and theorem then says that $\text{Im} \, \theta_A = \text{ICB}(A)$ if and only if A is a finite direct sum of homogeneous C*-algebras of finite type.
Two remarks

- Magajna’s theorem is also valid in a non-unital case, but then θ_A is defined on $M(A) \otimes_h M(A)$, and theorem then says that $\text{Im} \, \theta_A = \text{ICB}(A)$ if and only if A is a finite direct sum of homogeneous C^*-algebras of finite type.

- We note that in the inseparable case the problem remains open.
Contents

1 Introduction

2 Induced contraction θ^Z_A

3 The surjectivity problem of θ_A

4 On equality $\text{Im} \, \theta_A = E(A)$
Following Magajna’s work, we considered the dual question:
Following Magajna’s work, we considered the dual question:

Problem

Characterize all (unital) C^-algebras A for which $\text{Im} \, \theta_A$ is as small as possible, hence equal $E(A)$.***
Following Magajna’s work, we considered the dual question:

Problem

Characterize all (unital) C*-algebras A for which $\text{Im} \theta_A$ is as small as possible, hence equal $E(A)$.

Using Somerset’s description (4) of $\ker \theta_A$ and some additional calculations inside $A \otimes_h A$, we obtained the following result:
Theorem (G. 2011)

Suppose that A satisfies the equality $\text{Im} \, \theta_A = E(A)$. Then A is necessarily subhomogeneous. Moreover, if A is separable then there exists a finite number of elements $a_1, \ldots, a_n \in A$ whose canonical images linearly generate every two-primal quotient of A, i.e.

$$\text{span}\{a_1 + Q, \ldots, a_n + Q\} = A/Q \quad \text{for all } Q \in \text{Primal}_2(A).$$

- Recall, A is said to be subhomogeneous if the dimensions of its irreducible representations are bounded by some finite constant.
Theorem (G. 2011)

Suppose that A satisfies the equality $\text{Im} \, \theta_A = E(A)$. Then A is necessarily subhomogeneous. Moreover, if A is separable then there exists a finite number of elements $a_1, \ldots, a_n \in A$ whose canonical images linearly generate every two-primal quotient of A, i.e.

$$\text{span}\{a_1 + Q, \ldots, a_n + Q\} = A/Q \quad \text{for all } Q \in \text{Primal}_2(A).$$ (5)

- Recall, A is said to be subhomogeneous if the dimensions of its irreducible representations are bounded by some finite constant.
- The condition (5) seems to be rather technical, but it has a nice interpretation in some cases.
For example, Phillips (2007) introduced the class of *recursively subhomogeneous* C^*-algebras, which play an important role in K-theory. In separable case, those are just subhomogeneous C^*-algebras satisfying the following condition: If

$$0 = J_0 	riangleleft J_1 	riangleleft \cdots \triangleleft J_n = A$$

is a standard composition series for A, then each homogeneous quotient J_i/J_{i-1} is of finite type.
For example, Phillips (2007) introduced the class of recursively subhomogeneous C^*-algebras, which play an important role in K-theory. In separable case, those are just subhomogeneous C^*-algebras satisfying the following condition: If

$$0 = J_0 \trianglelefteq J_1 \trianglelefteq \cdots \trianglelefteq J_n = A$$

is a standard composition series for A, then each homogeneous quotient J_i/J_{i-1} is of finite type.

We proved that a unital separable C^*-algebra A is recursively subhomogeneous if and only if there exists a finite number of elements $a_1, \ldots, a_n \in A$ whose canonical images linearly generate every primitive quotient of A.

Since $\text{Primal}(A)$ contains $\text{Prim}(A)$, (5) implies that every unital separable C^*-algebras satisfying $\text{Im} \theta_A = E(A)$ must be recursively subhomogeneous (the converse is not true in general).
• For example, Phillips (2007) introduced the class of *recursively subhomogeneous C*-algebras*, which play an important role in K-theory. In separable case, those are just subhomogeneous C*-algebras satisfying the following condition: If

$$0 = J_0 \trianglelefteq J_1 \trianglelefteq \cdots \trianglelefteq J_n = A$$

is a standard composition series for A, then each homogeneous quotient J_i/J_{i-1} is of finite type.

• We proved that a unital separable C*-algebra A is recursively subhomogeneous if and only if there exists a finite number of elements $a_1, \ldots, a_n \in A$ whose canonical images linearly generate every primitive quotient of A.

• Since Primal$_2(A)$ contains Prim(A), (5) implies that every unital separable C*-algebras satisfying Im $\theta_A = E(A)$ must be recursively subhomogeneous (the converse is not true in general).
Bundles

In order to prove the partial converse, recall that to every unital (or more generally quasi-central) C^*-algebra A one can associate the canonical upper semicontinuous C^*-bundle \mathcal{A} over $X := \text{Max}(Z)$, such that $A \cong \Gamma(\mathcal{A})$, where $\Gamma(\mathcal{A})$ denotes the algebra of all continuous sections of \mathcal{A} (fibres of \mathcal{A} are just the Glimm quotients).
Bundles

In order to prove the partial converse, recall that to every unital (or more generally quasi-central) C^*-algebra A one can associate the canonical upper semicontinuous C^*-bundle \mathcal{A} over $X := \text{Max}(Z)$, such that $A \cong \Gamma(\mathcal{A})$, where $\Gamma(\mathcal{A})$ denotes the algebra of all continuous sections of \mathcal{A} (fibres of \mathcal{A} are just the Glimm quotients).

The similar statement is true for Hilbert $C(X)$-modules, but it is an important fact that their canonical Hilbert bundles are automatically continuous.
Bundles

- In order to prove the partial converse, recall that to every unital (or more generally quasi-central) C^*-algebra A one can associate the canonical upper semicontinuous C^*-bundle \mathcal{A} over $X := \text{Max}(Z)$, such that $A \cong \Gamma(\mathcal{A})$, where $\Gamma(\mathcal{A})$ denotes the algebra of all continuous sections of \mathcal{A} (fibres of \mathcal{A} are just the Glimm quotients).

- The similar statement is true for Hilbert $C(X)$-modules, but it is an important fact that their canonical Hilbert bundles are automatically continuous.

- Using this canonical duality between Hilbert $C(X)$-modules and continuous Hilbert bundles over X, we obtained the following result:
Theorem (G. 2011)

Let X be a compact metrizable space and let V be a Hilbert $C(X)$-module with its canonical Hilbert bundle \mathcal{H}. The following conditions are equivalent:

(i) V is topologically finitely generated, i.e. there exists a finite number of elements of V whose $C(X)$-linear span is dense in V.

(ii) Fibres \mathcal{H}_x of \mathcal{H} have uniformly finite dimensions, and each restriction bundle of \mathcal{H} over a set where $\dim \mathcal{H}_x$ is constant is of finite type (as a vector bundle).

(iii) there exists $N \in \mathbb{N}$ such that for every Banach $C(X)$-module W, each tensor in the $C(X)$-projective tensor product $V \overset{\pi}{\otimes}_{C(X)} W$ is of (finite) rank at most N.
Partial converse

- We shall use the latter theorem in order to prove the partial converse of our theorem on $\text{Im} \, \theta_A = E(A)$.
Partial converse

- We shall use the latter theorem in order to prove the partial converse of our theorem on $\text{Im} \theta_A = E(A)$.

- First suppose that A is subhomogeneous and that A is continuous (which is equivalent to the fact that the complete regularization map $\phi_A : \text{Prim}(A) \to \text{Glimm}(A)$ is open).
Partial converse

- We shall use the latter theorem in order to prove the partial converse of our theorem on $\text{Im} \, \theta_A = E(A)$.

- First suppose that A is subhomogeneous and that \mathcal{A} is continuous (which is equivalent to the fact that the complete regularization map $\phi_A : \text{Prim}(A) \to \text{Glimm}(A)$ is open).

- In this case we proved that every Glimm ideal of A must be primal and that the dimensions of fibres of \mathcal{A} are bounded by some finite constant.
Now, let X_1, \ldots, X_k be a (necessarily finite) partition of X such that the fibers of $\mathcal{A}|_{X_i}$ are mutually \ast-isomorphic (if $\dim A < \infty$, then A is just a finite direct sum of matrix algebras). If in addition A is separable, then using the fact that the Glimm ideals of A are primal (hence 2-primal) one can show that the condition (5) is equivalent to the fact that each restriction bundle $\mathcal{A}|_{X_i}$ is of finite type as a vector bundle.
Now, let X_1, \ldots, X_k be a (necessarily finite) partition of X such that the fibers of $\mathcal{A}|_{X_i}$ are mutually $*$-isomorphic (if $\dim A < \infty$, then A is just a finite direct sum of matrix algebras). If in addition A is separable, then using the fact that the Glimm ideals of A are primal (hence 2-primal) one can show that the condition (5) is equivalent to the fact that each restriction bundle $\mathcal{A}|_{X_i}$ is of finite type as a vector bundle.

If one would know that $\mathcal{A}|_{X_i}$ are also of finite type as C^*-bundles, then our proof would be more direct (fibres of $\mathcal{A}|_{X_i}$ are no simple in general, so we cannot use Phillips’s result on equivalence of finite type).
Now, let X_1, \ldots, X_k be a (necessarily finite) partition of X such that the fibers of $\mathcal{A}|_{X_i}$ are mutually $*$-isomorphic (if $\dim A < \infty$, then A is just a finite direct sum of matrix algebras). If in addition A is separable, then using the fact that the Glimm ideals of A are primal (hence 2-primal) one can show that the condition (5) is equivalent to the fact that each restriction bundle $\mathcal{A}|_{X_i}$ is of finite type as a vector bundle.

If one would know that $\mathcal{A}|_{X_i}$ are also of finite type as C^*-bundles, then our proof would be more direct (fibres of $\mathcal{A}|_{X_i}$ are no simple in general, so we cannot use Phillips’s result on equivalence of finite type).

Since each \mathcal{A}_i is locally trivial as a C^*-bundle, on each C^*-algebra $A_i := \Gamma_0(\mathcal{A}_i)$ one can find a $C_0(X_i)$-valued inner product $\langle \cdot, \cdot \rangle_i$ whose induced norm $a \mapsto \|\langle a, a \rangle_i\|_2$ is equivalent to the C^*-norm of A_i (hence $(A_i, \langle \cdot, \cdot \rangle_i)$ is a Hilbert $C_0(X_i)$-module).
Now, using induction on $k (=\text{the cardinality of } \{X_i\})$ together with the theorem on topologically finitely generated Hilbert $C(X)$-modules, one obtains the similar result for C^*-algebras:
Now, using induction on \(k \) (=the cardinality of \(\{X_i\} \)) together with the theorem on topologically finitely generated Hilbert \(C(X) \)-modules, one obtains the similar result for \(C^* \)-algebras:

Theorem (G. 2011)

Let \(A \) be a unital separable \(C^* \)-algebra, such that \(\mathfrak{A} \) is continuous. The following conditions are equivalent:

(i) \(A \) satisfies (5).

(ii) \(A \) as a Banach \(Z = C(X) \)-module is t.f.g.

(iii) \(\sup_{x \in X} \dim \mathfrak{A}_x < \infty \), and each restriction bundle of \(\mathfrak{A} \) over a set where \(\dim \mathfrak{A}_x \) is constant is of finite type (as a vector bundle).

(iv) there exists \(N \in \mathbb{N} \) such that for every Banach \(C(X) \)-module \(W \), each tensor in the \(C(X) \)-projective tensor product \(\pi \otimes_{C(X)} W \) is of (finite) rank at most \(N \).
Finally, we use a result of Kumar and Sinclair (1998) which says that if A is a subhomogeneous C^*-algebra, then the Haagerup and projective norm on $A \otimes A$ are equivalent. Hence, $A \otimes Z, h A$ and $A \otimes_{C(X)} A$ are isomorphic as Banach spaces.
Finally, we use a result of Kumar and Sinclair (1998) which says that if A is a subhomogeneous C^*-algebra, then the Haagerup and projective norm on $A \otimes A$ are equivalent. Hence, $A \otimes Z, h A$ and $A \otimes_{C(X)} A$ are isomorphic as Banach spaces.

As we proved, there exists $N \in \mathbb{N}$ such that each tensor $t \in A \otimes_{C(X)} A$ can be written in a form $t = \sum_{i=1}^{m} a_i \otimes_X b_i$, for some $m \leq N$ and $a_i, b_i \in A$, so the same conclusion holds for tensors in $A \otimes Z, h A$.

\otimes
Finally, we use a result of Kumar and Sinclair (1998) which says that if A is a subhomogeneous C^*-algebra, then the Haagerup and projective norm on $A \otimes A$ are equivalent. Hence, $A \otimes \mathcal{Z}, h A$ and $A \pi \otimes C(X) A$ are isomorphic as Banach spaces.

As we proved, there exists $N \in \mathbb{N}$ such that each tensor $t \in A \pi \otimes C(X) A$ can be written in a form $t = \sum_{i=1}^{m} a_i \otimes X b_i$, for some $m \leq N$ and $a_i, b_i \in A$, so the same conclusion holds for tensors in $A \otimes \mathcal{Z}, h A$.

Finally, since A is subhomogeneous, the cb-norm and the operator norm on $\text{ICB}(A)$ are equivalent, so $\overline{E(A)} = \overline{E(A)}_{cb}$, and since every Glimm ideal of A is primal, Somerset’s theorem implies $\overline{E(A)}_{cb} = \text{Im} \theta_{A}^{Z} = \text{Im} \theta_{A}$. Putting all together, we obtain:
Corollary

Let A be a unital separable C^*-algebra such that \mathcal{A} is continuous. The following conditions are equivalent:

(i) A satisfies (5).

(ii) $\overline{E(A)} = E(A)$ or $\overline{E(A)}_{cb} = E(A)$ or $\text{Im} \, \theta_A = E(A)$.

(iii) $\sup_{x \in X} \dim \mathcal{A}_x < \infty$, and each restriction bundle of \mathcal{A} over a set where $\dim \mathcal{A}_x$ is constant is of finite type (as a vector bundle).

(iv) A as a Banach $Z = C(X)$-module is t.f.g.
Corollary

Let A be a unital separable C^*-algebra such that \mathcal{A} is continuous. The following conditions are equivalent:

(i) A satisfies (5).

(ii) $\overline{E(A)} = E(A)$ or $\overline{E(A)}_{cb} = E(A)$ or $\text{Im } \theta_A = E(A)$.

(iii) $\sup_{x \in X} \dim \mathcal{A}_x < \infty$, and each restriction bundle of \mathcal{A} over a set where $\dim \mathcal{A}_x$ is constant is of finite type (as a vector bundle).

(iv) A as a Banach $Z = C(X)$-module is t.f.g.

Problem

What can be said in a more general case, for example in a case when every Glimm ideal of A is 2-primal?
References

References

References