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Homogeneous C ∗-algebras

In the light of noncommutative topology it is natural to try to view a given
unital C ∗-algebra A as a set of sections of some sort of the bundle. For
example, C (X ) is the family of sections of trivial bundle over X .

This idea in particularly works well for the following class of C ∗-algebras:

Definition

A C ∗-algebra is called n-homogeneous if all its irreducible representations
are of the same finite dimension n.

Theorem (Fell & Tomiyama-Takesaki)

If A is a (unital) n-homogeneous C ∗-algebra, then its (primitive) spectrum
X is a CH space and there is a locally trivial bundle E over X with fibre
Mn and structure group Aut(Mn) = PU(n) = U(n)/S1 such that A is
isomorphic to the algebra Γ(E) of sections of E . Moreover, any two such
algebras Ai = Γ0(Ei ) with spectra Xi are isomorphic if and only if there is
a homeomorphism f : X1 → X2 such that E1

∼= f ∗(E2) as bundles over X1.
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In particular, the classification problem of n-homogeneous C ∗-algebras over
X is equivalent to the classification problem of PU(n)-bundles over X .

From the general theory of fibre bundles we know that any topological
group G admits the universal G -bundle EG over BG (where BG is the
classifying space of G ), which has the property that any G -bundle E over
a CW-complex X is isomorphic to the induced G -bundle f ∗(EG ) for some
continuous map f : X → BG .
Since any two homotopic maps induce isomorphic bundles, the map
[f ] 7→ [f ∗(EG )] defines a bijection between the homotopy classes [X ,BG ]
onto the isomorphism classes Bun(X ,G ) of G -bundles over X .

The classifying space of PU(n) is not that easy to describe as it is for the
group U(n) (=inductive limits of complex Grassmanians). Hence, the
classification problem of PU(n)-bundles is more complex than the
classification problem of (complex) vector bundles.
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Algebraic characterisation of homogeneous C ∗-algebras

Standard polynomial of degree k is a polynomial in k non-commuting
variables x1, . . . , xk defined by

sk(x1, . . . , xk) :=
∑
σ∈Sk

sign(σ)xσ(1) · · · xσ(k),

where Sk is a symmetric group of order k.

Definition

We say that a ring R satisfies the standard identity sk if for each k-tuple
(r1, . . . , rk) of elements in R we have sk(r1, . . . , rk) = 0.

Theorem (Amitsur-Levitzki)

If R is a unital commutative ring, then the ring Mn(R) of n × n matrices
over R satisfies the standard identity s2n.
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Algebraic characterisation of homogeneous C ∗-algebras

Standard polynomial of degree k is a polynomial in k non-commuting
variables x1, . . . , xk defined by

sk(x1, . . . , xk) :=
∑
σ∈Sk

sign(σ)xσ(1) · · · xσ(k),

where Sk is a symmetric group of order k.

Definition

We say that a ring R satisfies the standard identity sk if for each k-tuple
(r1, . . . , rk) of elements in R we have sk(r1, . . . , rk) = 0.

Theorem (Amitsur-Levitzki)

If R is a unital commutative ring, then the ring Mn(R) of n × n matrices
over R satisfies the standard identity s2n.
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Definition

We say that a unital R ring is an An-ring if:

(i) R satisfies the standard identity s2n; and

(ii) No non-zero homomorphic image of R satisfies the standard identity
s2(n−1).

Corollary

A unital C ∗-algebra A is an An-ring if and only if A is n-homogeneous.

Definition

A unital ring R with centre Z is said to be Azumaya over Z if:

(i) R is a finitely generated projective Z-module; and

(ii) The canonical homomorphism

θ : A⊗Z A◦ → EndZ (R), θ(a⊗ b)(x) = axb

is an isomorphism.
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If R iz Azumaya over Z , then R is a finitely generated projective Z -module
and hence has a rank function Spec(R)→ N0. If this function is constant
then R is said to be of constant rank. In this case the rank of R is a
perfect square.

Theorem (Artin)

A unital ring R is an An-ring if and only if R iz Azumaya of constant rank
n2.

Corollary

For a unital C ∗-algebra A the following conditions are equivalent:

(i) A is n-homogeneous.

(ii) A is an An-ring.

(iii) A is Azumaya of constant rank n2.
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Theorem (G. 2011)

For a C ∗-algebra A the following conditions are equivalent:

(i) A is Azumaya.

(ii) A is finitely generated module over the centre of its multiplier algebra.

(iii) A is a finite direct sum of unital homogeneous C ∗-algebras.

Ilja Gogić (University of Zagreb) Fiberwise TMs on homogeneous C*-algebras 27OT, Timişoara 7 / 13



Fiberwise two-sided multiplications on homogeneous C*-algebras

If A is a C ∗-algebra, the important class of bounded linear maps φ : A→ A
are the ones that preserve its (closed two-sided) ideals, i.e. φ(I ) ⊆ I for all
ideals I of A. We denote by IB(A) the set of all such maps.

Since any ideal in a C ∗-algebra is an intersection of all primitive ideals
that contain it, a bounded linear map φ : A→ A lies in IB(A) if and
only if φ preserves all primitive ideals of A.

For any ideal I of A, φ induces a map φI : A/I → A/I which sends
a + I to φ(a) + I .

The class of maps φ ∈ IB(A) that have the simplest form are the
two-sided multiplications Ma,b : x 7→ axb, where a and b are elements of
A. We denote by TM(A) the set of all such maps.
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Problem

Suppose that A is a ”well-behaved” unital C ∗-algebra. If φ ∈ IB(A) has
the property that each induced map φP : A/P → A/P (P ∈ Prim(A)) is a
two-sided multiplication of A/P, does φ have to be a two-sided
multiplication of A?

Remark

In the sequel we consider the above problem when A = Γ(E) is a unital
n-homogeneous algebra over X = Prim(A) (which is compact since A is
unital), where E is the canonical PU(n)-bundle over X .

Definition

We say that a map φ ∈ IB(A) is a fiberwise two-sided multiplication if
φx ∈ TM(Ax) for all x ∈ X. The set of all such maps is denoted by
FTM(A).
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Prposition

Let φ ∈ FTM(A) and suppose that φx0 6= 0 for some x0 ∈ X. Then there
exists a compact neighborhood N of x0 and a, b ∈ A such that a(x) 6= 0
and b(x) 6= 0 for all x ∈ N and φ = Ma,b modulo the ideal
IN = {a ∈ A : a(x) = 0 for all x ∈ N}.

Auxiliary notation

TMnv(A) = {φ ∈ TM(A) : φx 6= 0 ∀x ∈ X};
FTMnv(A) = {φ ∈ FTM(A) : TM(Ax) 3 φx 6= 0 ∀x ∈ X}.

Theorem (G.-Timoney 2018)

To each operator φ ∈ FTMnv(A) there is a canonically associated complex
line subbundle Lφ of E such that

φ ∈ TMnv(A) ⇐⇒ Lφ is a trivial bundle.

Moreover, for each complex line subbundle L of E there is an operator
φL ∈ FTMnv(A) such that LφL = L.
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As we know, the principle G -bundles over X are classified by:

homotopy classes [X ,BG ] (BG is the classifying space of G ).

Čech cohomology H1(X ;G ) of equivalent 1-cocycles of a sheaf S
over X , whose local groups are sections C (U,G ), U ⊂ X .

When we deal with (principle) complex line bundles, their structure group
is G = U(1) = S1. In this case BG = CP∞ and there exists a natural
isomorphisms of groups H1(X ;G )→ Ȟ2(X ;Z).

In the light of previous theorem, for a homogeneous C ∗-algebra A = Γ(E)
we define a map

θ : FTMnv(A)→ Ȟ2(X ;Z)

that sends an operator φ ∈ FTMnv(A) to the corresponding class of the
bundle Lφ in Ȟ2(X ;Z). Then θ−1(0) = TMnv(A) (by the latter theorem).
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Corollary

If Ȟ2(X ;Z) = 0, then FTMnv(A) = TMnv(A).

Theorem (G.-Timoney 2018)

Suppose that dimX ≤ d <∞. For each n ≥ 1 let An = C (X ,Mn). If

p :=
⌈√

(d + 1)/2
⌉

, then for every n ≥ p the mapping

θ : FTMnv(A)→ Ȟ2(X ;Z) is surjective. In particular, if Ȟ2(X ;Z) 6= 0,
then TMnv(An)  FTMnv(An) for all n ≥ p.

Corollary

If X = S2 or X = S1 × S1, then for A = C (X ,Mn) we have
TMnv(A)  FTMnv(A) for all n ≥ 2.
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, then for every n ≥ p the mapping

θ : FTMnv(A)→ Ȟ2(X ;Z) is surjective. In particular, if Ȟ2(X ;Z) 6= 0,
then TMnv(An)  FTMnv(An) for all n ≥ p.

Corollary

If X = S2 or X = S1 × S1, then for A = C (X ,Mn) we have
TMnv(A)  FTMnv(A) for all n ≥ 2.
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Ilja Gogić (University of Zagreb) Fiberwise TMs on homogeneous C*-algebras 27OT, Timişoara 12 / 13



Theorem (G.-Timoney 2108)

Let A = Γ(E) be a unital homogeneous C ∗-algebra with X = Prim(A).
Consider the following two conditions:

(a) ∀U ⊂ X open, each complex line subbundle of E|U is trivial.

(b) FTM(A) = TM(A).

Then (a) ⇒ (b). If A is separable, then (a) and (b) are equivalent.

Corollary

Suppose that n ≥ 2.

(a) If X is second-countable with dimX < 2, or if X is (homeomorphic
to) a subset of a non-compact connected 2-manifold, then
FTM(A) = TM(A).

(b) If X contains a nonempty open subset homeomorphic to (an open
subset of) Rd for some d ≥ 3, then FTM(A) \ TM(A) 6= ∅.
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