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C ∗-algebras as noncommutative topology

Definition

A (unital) C ∗-algebra is a complex Banach ∗-algebra A whose norm ‖ · ‖
satisfies the C ∗-identity. More precisely:

A is a Banach algebra with identity over the field C.

A is equipped with an involution, i.e. a map ∗ : A→ A, a 7→ a∗

satisfying the properties:

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.

Norm ‖ · ‖ satisfies the C ∗-identity, i.e.

‖a∗a‖ = ‖a‖2

for all a ∈ A.
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Remark

The C ∗-identity is a very strong requirement. For instance, together with
the spectral radius formula, it implies that the C ∗-norm is uniquely
determined by the algebraic structure: For all a ∈ A we have

‖a‖2 = ‖a∗a‖ = r(a∗a) = sup{|λ| : λ ∈ spec(a∗a)}.

In the category of C ∗-algebras, the natural morphisms are the (unital)
∗-homomorphisms, i.e. the algebra homomorphisms which preserve the
involution and the identity. They are automatically contractive.

Example

Let X be a CH (compact Hausdorff) space and let C (X ) be the set of all
continuous complex-valued functions on X . Then C (X ) becomes a
commutative C ∗-algebra with respect to the pointwise operations,
involution f ∗(x) := f (x), and max-norm ‖f ‖∞ := sup{|f (x)| : x ∈ X}.
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In fact, all unital commutative C ∗-algebras arise in this fashion:

Theorem (Gelfand-Naimark)

The (contravariant) functor X  C (X ) defines an equivalence of
categories of CH spaces (with continuous maps as morphisms) and
commutative C ∗-algebras (with ∗-homomorphisms as morphisms).

In other words: By passing from the space X the function algebra C (X ),
no information is lost. In fact, X can be recovered from C (X ). Thus,
topological properties of X can be translated into algebraic properties of
C (X ), and vice versa, so the theory of C ∗-algebras is often thought of as
noncommutative topology.
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Basic examples

The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn = Mn(C) are C ∗-algebras.

In fact, every C ∗-algebra can be isometrically embedded as a
norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H
(the noncommutative Gelfand-Naimark theorem).

To every locally compact group G , one can associate a C ∗-algebra
C ∗(G ). Everything about the representation theory of G is encoded
in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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Homogeneous C ∗-algebras

Definition

A representation of a C ∗-algebra A is a ∗-homomorphism π : A→ B(H)
for some Hilbert space H. A representation π is said to be irreducible if it
has no nontrivial closed invariant subspaces (i.e. if K is a closed subspace
of H such that π(A)K ⊆ K, then K = {0} or K = H).

Noncommutative Gelfand-Naimark theorem

Every C ∗-algebra admits an isometric representation on some Hilbert
space.

Remark

Because of the previous theorem, C ∗-algebras can be concretely defined as
norm closed self-adjoint subalgebras of bounded operators on some Hilbert
space H.
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Definition

Let A be C ∗-algebra.

A primitive ideal of A is an ideal which is the kernel of an irreducible
representation of A.

The primitive spectrum of A is the set Prim(A) of primitive ideals
of A equipped with the Jacobson topology: If S is a set of primitive
ideals, its closure is

S :=

P ∈ Prim(A) : P ⊇
⋂
Q∈S

Q

 .

Example

If A = C (X ), let Cx(X ) := {f ∈ C (X ) : f (x) = 0} (x ∈ X ). Then
Prim(C (X )) = {Cx(X ) : x ∈ X}. Moreover, the correspondence
x 7→ Cx(X ) defines a homeomorphism between X and Prim(C (X )).
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Ilja Gogić (University of Zagreb) Fiberwise TMs on homogeneous C*-algebras XX GS 2018, Vrnjačka Banja 7 / 22



In the light of noncommutative topology it is natural to try to view a given
unital C ∗-algebra A as a set of sections of some sort of the bundle. For
example, C (X ) is the family of sections of trivial bundle over X .

This idea in particularly works well for the following class of C ∗-algebras:

Definition

A C ∗-algebra A is called n-homogeneous if A/P ∼= Mn for every
P ∈ Prim(A).

Theorem (Fell & Tomiyama-Takesaki)

If A is a (unital) n-homogeneous C ∗-algebra, then its primitive spectrum
X is a CH space and there is a locally trivial bundle E over X with fibre
Mn and structure group Aut(Mn) = PU(n) = U(n)/S1 such that A is
isomorphic to the algebra Γ(E) of sections of E .
Moreover, any two such algebras Ai = Γ0(Ei ) with spectra Xi are
isomorphic if and only if there is a homeomorphism f : X1 → X2 such that
E1
∼= f ∗(E2) as bundles over X1.
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In particular, the classification problem of n-homogeneous C ∗-algebras over
X is equivalent to the classification problem of PU(n)-bundles over X .

From the general theory we know that any topological group G admits the
universal G -bundle EG over BG (where BG is the classifying space of
G ), which has the property that any G -bundle E over a CW-complex X is
isomorphic to the induced G -bundle f ∗(EG ) for some continuous map
f : X → BG .
Since any two homotopic maps induce isomorphic bundles, the map
[f ] 7→ [f ∗(EG )] defines a bijection between the homotopy classes [X ,BG ]
onto the isomorphism classes Bun(X ,G ) of G -bundles over X .

The classifying space of PU(n) is not that easy to describe as it is for the
group U(n) (=inductive limits of complex Grassmanians). Hence, the
classification problem of PU(n)-bundles is more complex than the
classification problem of (complex) vector bundles.
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However, if our base space X is of the form Σ(Y ) (suspension of Y ) we
can use the following result:

Theorem

If the group G is path-connected, then there exists a bijection between the
equivalence classes of G-bundles over X = Σ(Y ) and the homotopy
classes [Y ,G ].

In particular, since Σ(Sk−1) = Sk , we have:

Corollary

If the group G is path-connected, then there is a bijection between the
equivalence classes of G-bundles over Sk and the elements of
(k − 1)th-homotopy group πk−1(G ).
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The lower homotopy groups of G = PU(n) are known. In particular,
putting X = Sk , we get:

No. of isomorphism classes of n-homogeneous C ∗-algebras over Sk

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

S1 1 1 1 1 1 1 1 1 1 1

S2 1 2 3 4 5 6 7 8 9 10

S3 1 1 1 1 1 1 1 1 1 1

S4 1 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0

S5 1 2 1 1 1 1 1 1 1 1

S6 1 2 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0 ℵ0

S7 1 12 6 1 1 1 1 1 1 1
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We end this part of the talk with the following interesting result:

Theorem (Antonevič-Krupnik)

If E is any PU(n)-bundle over X = Sk , then:

(i) E is trivial as a vector bundle; and

(ii) E is of the form E = End(V) for some n-dimensional vector bundle V
over Sk .

Problem

Which manifolds/CW-complexes X satisfy the statements (i) and/or (ii)
of the above theorem?
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Algebraic characterisation of homogeneous C ∗-algebras

Standard polynomial of degree k is a polynomial in k non-commuting
variables x1, . . . , xk defined by

sk(x1, . . . , xk) :=
∑
σ∈Sk

sign(σ)xσ(1) · · · xσ(k),

where Sk is a symmetric group of order k.

Definition

We say that a ring R satisfies the standard identity sk if for each k-tuple
(r1, . . . , rk) of elements in R we have sk(r1, . . . , rk) = 0.

Theorem (Amitsur-Levitzki)

If R is a unital commutative ring, then the ring Mn(R) of n × n matrices
over R satisfies the standard identity s2n.
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Definition

We say that a unital R ring is an An-ring if:

(i) R satisfies the standard identity s2n; and

(ii) No non-zero homomorphic image of R satisfies the standard identity
s2(n−1).

Corollary

A unital C ∗-algebra A is an An-ring if and only if A is n-homogeneous.

Definition

A unital ring R with centre Z is said to be Azumaya over Z if:

(i) R is a finitely generated projective Z-module; and

(ii) The canonical homomorphism

θ : A⊗Z A◦ → EndZ (R), θ(a⊗ b)(x) = axb

is an isomorphism.
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If R iz Azumaya over Z , then R is a finitely generated projective Z -module
and hence has a rank function Spec(R)→ N0. If this function is constant
then R is said to be of constant rank. In this case the rank of R is a
perfect square.

Theorem (Artin)

A unital ring R is an An-ring if and only if R iz Azumaya of constant rank
n2.

Corollary

For a unital C ∗-algebra A the following conditions are equivalent:

(i) A is n-homogeneous.

(ii) A is an An-ring.

(iii) A is Azumaya of constant rank n2.
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For a unital C ∗-algebra A the following conditions are equivalent:

(i) A is n-homogeneous.

(ii) A is an An-ring.

(iii) A is Azumaya of constant rank n2.
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Theorem (G. 2011)

For a C ∗-algebra A the following conditions are equivalent:

(i) A is Azumaya.

(ii) A is finitely generated module over the centre of its multiplier algebra.

(iii) A is a finite direct sum of unital homogeneous C ∗-algebras.
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Fiberwise two-sided multiplications on homogeneous C*-algebras

If A is a C ∗-algebra, the important class of bounded linear maps φ : A→ A
are the ones that preserve its (closed two-sided) ideals, i.e. φ(I ) ⊆ I for all
ideals I of A. We denote by IB(A) the set of all such maps.

Since any ideal in a C ∗-algebra is an intersection of all primitive ideals
that contain it, a bounded linear map φ : A→ A lies in IB(A) if and
only if φ preserves all primitive ideals of A.

For any ideal I of A, φ induces a map φI : A/I → A/I which sends
a + I to φ(a) + I .

The class of maps φ ∈ IB(A) that have the simplest form are the
two-sided multiplications Ma,b : x 7→ axb, where a and b are elements of
A. We denote by TM(A) the set of all such maps.
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Problem

Suppose that A is a ”well-behaved” unital C ∗-algebra. If φ ∈ IB(A) has
the property that each induced map φP : A/P → A/P (P ∈ Prim(A)) is a
two-sided multiplication of A/P, does φ have to be a two-sided
multiplication of A?

Remark

In the sequel we consider the above problem when A = Γ(E) is a unital
n-homogeneous algebra over X = Prim(A) (which is compact since A is
unital), where E is the canonical PU(n)-bundle over X .

Definition

We say that a map φ ∈ IB(A) is a fiberwise two-sided multiplication if
φx ∈ TM(Ax) for all x ∈ X. The set of all such maps is denoted by
FTM(A).
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Prposition

Let φ ∈ FTM(A) and suppose that φx0 6= 0 for some x0 ∈ X. Then there
exists a compact neighborhood N of x0 and a, b ∈ A such that a(x) 6= 0
and b(x) 6= 0 for all x ∈ N and φ = Ma,b modulo the ideal
IN = {a ∈ A : a(x) = 0 for all x ∈ N}.

Auxiliary notation

TMnv(A) = {φ ∈ TM(A) : φx 6= 0 ∀x ∈ X};
FTMnv(A) = {φ ∈ FTM(A) : TM(Ax) 3 φx 6= 0 ∀x ∈ X}.

Theorem (G.-Timoney 2018)

To each operator φ ∈ FTMnv(A) there is a canonically associated complex
line subbundle Lφ of E such that

φ ∈ TMnv(A) ⇐⇒ Lφ is a trivial bundle.

Moreover, for each complex line subbundle L of E there is an operator
φL ∈ FTMnv(A) such that LφL = L.
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As we know, the principle G -bundles over X are classified by:

homotopy classes [X ,BG ] (BG is the classifying space of G ).

Čech cohomology H1(X ;G ) of equivalent 1-cocycles of a sheaf S
over X , whose local groups are sections C (U,G ), U ⊂ X .

When we deal with (principle) complex line bundles, their structure group
is G = U(1) = S1. In this case BG = CP∞ and there exists a natural
isomorphisms of groups H1(X ;G )→ Ȟ2(X ;Z).

In the light of previous theorem, for a homogeneous C ∗-algebra A = Γ(E)
we define a map

θ : FTMnv(A)→ Ȟ2(X ;Z)

that sends an operator φ ∈ FTMnv(A) to the corresponding class of the
bundle Lφ in Ȟ2(X ;Z). Then θ−1(0) = TMnv(A) (by the latter theorem).
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Corollary

If Ȟ2(X ;Z) = 0, then FTMnv(A) = TMnv(A).

Theorem (G.-Timoney 2018)

Suppose that dimX ≤ d <∞. For each n ≥ 1 let An = C (X ,Mn). If

p :=
⌈√

(d + 1)/2
⌉

, then for every n ≥ p the mapping

θ : FTMnv(A)→ Ȟ2(X ;Z) is surjective. In particular, if Ȟ2(X ;Z) 6= 0,
then TMnv(An)  FTMnv(An) for all n ≥ p.

Corollary

If X = S2 or X = S1 × S1, then for A = C (X ,Mn) we have
TMnv(A)  FTMnv(A) for all n ≥ 2.

Ilja Gogić (University of Zagreb) Fiberwise TMs on homogeneous C*-algebras XX GS 2018, Vrnjačka Banja 21 / 22
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Theorem (G.-Timoney 2018)

Let A = Γ(E) be a unital homogeneous C ∗-algebra with X = Prim(A).
Consider the following two conditions:

(a) ∀U ⊂ X open, each complex line subbundle of E|U is trivial.

(b) FTM(A) = TM(A).

Then (a) ⇒ (b). If A is separable, then (a) and (b) are equivalent.

Corollary

Suppose that n ≥ 2.

(a) If X is second-countable with dimX < 2, or if X is (homeomorphic
to) a subset of a non-compact connected 2-manifold, then
FTM(A) = TM(A).

(b) If X contains a nonempty open subset homeomorphic to (an open
subset of) Rd for some d ≥ 3, then FTM(A) \ TM(A) 6= ∅.
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