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Abstract. Let Mn denote the algebra of n × n complex matrices and let A ⊆ Mn be
an arbitrary structural matrix algebra, i.e. a subalgebra of Mn that contains all diagonal
matrices. We consider injective maps ϕ : A → Mn that satisfy the condition

ϕ(X • Y ) = ϕ(X) • ϕ(Y ), for all X,Y ∈ A,

where • is either the standard matrix multiplication (X,Y ) 7→ XY , or the (normalized)
Jordan product (X,Y ) 7→ 1

2
(XY + Y X). We show that all such maps ϕ are automatically

additive if and only if A does not contain a central rank-one idempotent. Moreover, in this
case, we fully characterize the form of these maps.

1. Introduction

The interplay between the multiplicative and the additive structure of rings and algebras has
been a topic of considerable interest among mathematicians. A classical result by Martindale
[21, Corollary] asserts that any bijective multiplicative map from a prime ring containing
a nontrivial idempotent onto an arbitrary ring must be additive and, consequently, a ring
isomorphism. In the context of matrix rings Mn(R) over a principle ideal domain R, the
structure of non-degenerate multiplicative maps ϕ :Mn(R) →Mn(R) (i.e. maps that are not
zero on all zero-determinant matrices) was completely described by Jodeit and Lam in [18].
Specifically, by [18, Corollary], every bijective multiplicative map ϕ : Mn(R) → Mn(R) has
the form

ϕ(X) = Tω(X)T−1, ∀X ∈Mn(R),

for some invertible matrix T ∈Mn(R) and a ring automorphism ω of R, where ω(X) denotes
the matrix in Mn(R) obtained by applying ω entrywise to X. Moreover, in [23], Pierce
demonstrated that the Jodeit-Lam characterization does not extend to matrix rings over
arbitrary integral domains. More recently, in [25] Šemrl provided a comprehensive description
of the (non-degenerate) multiplicative endomorphisms of matrix rings over arbitrary division
rings, as well as the structure of multiplicative bijective maps of standard operator algebras
(i.e. subalgebras of bounded linear maps on a complex Banach space that contain all finite-
rank operators) [24].

In addition to ring homomorphisms, another important class of transformations between
rings is that of Jordan homomorphisms. Specifically, a Jordan homomorphism between as-
sociative rings (algebras) A and B is an additive (linear) map ϕ : A → B that satisfies the
condition
(1.1) ϕ(xy + yx) = ϕ(x)ϕ(y) + ϕ(y)ϕ(x), ∀x, y ∈ A.
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In the case where the rings (algebras) are 2-torsion-free, this condition is equivalent to the
requirement that ϕ preservers squares, meaning that

ϕ(x2) = ϕ(x)2, ∀x ∈ A.
A fundamental problem in Jordan theory, with a rich historical background, is to identify
conditions on rings (algebras) A and B which ensure that any Jordan homomorphism ϕ :
A → B (typically under additional assumptions such as surjectivity) is either multiplicative
or antimultiplicative, or more generally, can be expressed as a suitable combination of such
maps. For foundational results on this subject, we refer to the papers of Herstein, Jacobson-
Rickart, and Smiley [14, 15, 27]. The theory of Jordan homomorphisms originates from
Jordan algebras, a class of nonassociative algebras that appear in various fields, including
functional analysis and the mathematical foundations of quantum mechanics. Most of the
practically relevant Jordan algebras naturally arise as subalgebras of an associative real or
complex algebra A, equipped with the (normalized) Jordan product, given by

(1.2) x ◦ y :=
1

2
(xy + yx), ∀x, y ∈ A.

It is clear that an additive map ϕ between algebras A and B is a Jordan homomorphism if
and only if it preserves the Jordan product, i.e.
(1.3) ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y), ∀x, y ∈ A.
In [22, Theorem 1], Molnar characterizes the bijective solutions of the functional equation
(1.3), when both A and B are standard (complex) operator algebras and A 6∼= C. A key con-
sequence of this result is that such maps are automatically additive. The finite-dimensional
version of Molnar’s theorem (which, along with [18, Corollary], serves as the primary moti-
vation for the present work) asserts that any bijective map ϕ :Mn(C) →Mn(C), n ≥ 2, that
satisfies (1.3) is of the form

ϕ(X) = Tω(X)T−1 or ϕ(X) = Tω(X)tT−1, ∀X ∈Mn(C),

for some invertible matrix T ∈Mn(C) and a ring automorphism ω of C, where (·)t stands for
the transposition. For additional variants and generalizations of Molnar’s result, particularly
those addressing the automatic additivity of bijective solutions of (1.3), we refer to [16, 17,
19, 20] and the references therein.

The purpose of this paper is to extend both [18, Corollary] and the finite-dimensional
variant of [22, Theorem 1] to the setting of injective maps on structural matrix algebras
(SMAs). These are subalgebras of the matrix algebra Mn(F) over a field F spanned by matrix
units indexed by a quasi-order on the set {1, . . . , n}. For convenience, we focus specifically
on the case where F is the field C of complex numbers. A simple argument shows that SMAs
are precisely subalgebras of Mn(C) that contain all diagonal matrices (see [12, Proposition
3.1]). SMAs were originally introduced by van Wyk in [28] and, since then, they (and the
closely related incidence algebras) have been the subject of extensive study, including works
such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 26, 28]. Let us highlight that the description
of the (algebra) automorphisms of SMAs was provided by Coelho in [8, Theorem C], while
the description of Jordan embeddings (monomorphisms) between two SMAs in Mn(C) was
established in our recent paper [12]. The main result of the current paper, presented in
Theorem 3.1, provides a characterization of SMAs A ⊆ Mn(C) with the property that any
injective map ϕ : A → Mn(C), which either preserves the standard matrix multiplication
or the (normalized) Jordan product (1.2), must be additive. This occurs precisely when A
does not contain a central rank-one idempotent. Furthermore, in this case, we describe the
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exact form of such maps. The same conclusion holds for injective maps ϕ : A → Mn(C)
satisfying (1.1) (see Remark 3.7). We conclude the paper with Example 3.8, which illustrates
that Theorem 3.1 cannot be further extended to general subalgebras of Mn(C).

2. Notation and Preliminaries

Let us now introduce some notation which will be used throughout the paper. First of all,
for an arbitrary set S, by |S| we denote its cardinality.

Given a unital associative complex algebra A, by Z(A), A× and Idem(A) we denote its
centre, the group of all invertible elements and the set of all idempotents in A, respectively.
By ◦ we denote the (normalized) Jordan product, defined by (1.2). Note that p ∈ A is an
idempotent if and only if it is a Jordan idempotent (i.e. satisfies p ◦ p = p). For p ∈ Idem(A)
we denote p⊥ := 1− p ∈ Idem(A). Further, for p, q ∈ Idem(A) we write

p ≤ q if pq = qp = p

and
p ⊥ q if pq = qp = 0.

Obviously ≤ constitutes a partial order on Idem(A). We have the following straightforward,
yet useful lemma.

Lemma 2.1. For p, q ∈ Idem(A) and an arbitrary a ∈ A we have:
(a) p ◦ a = 0 if and only if pa = ap = pap = 0.
(b) p ◦ a = a if and only if pa = ap = pap = a.
(c) p ⊥ q if and only if p ◦ q = 0.
(d) p ≤ q if and only if p ◦ q = p.

Proof. Clearly, (a) =⇒ (c) and (b) =⇒ (d), so we prove only (a) and (b).
(a) If pa = ap = 0, then trivially p ◦ a = 0. Conversely, p ◦ a = 0 is equivalent to pa+ ap = 0.

Multiplying this equality from the left and right by p yields pa = ap = −pap. Hence,
0 = pa+ ap = −pap =⇒ pa = ap = 0 = pap.

(b) If pa = ap = a, then obviously p◦a = a. Conversely, p◦a = a is equivalent to pa+ap = 2a.
Multiplying this equality from the left and right by p yields pa = ap = pap. Therefore,

a =
1

2
(pa+ ap) = pap =⇒ pa = ap = pap = a.

□

Given another algebra B, we say that a map ψ : Idem(A) → Idem(B) is orthoadditive if
p ⊥ q =⇒ ψ(p+ q) = ψ(p) + ψ(q), ∀p, q ∈ Idem(A).

Let n ∈ N.
– By [n] we denote the set {1, . . . , n}.
– By Mn = Mn(C) we denote the algebra of n × n complex matrices and by Dn its

subalgebra consisting of all diagonal matrices.
– Given a matrix X ∈Mn, by r(X) and Tr(X) we denote the rank and the trace of X,

respectively.
– For X,Y ∈ Mn, by X ∝ Y we denote the fact that either X = Y = 0, or they are

both nonzero and collinear.
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– For i, j ∈ [n], by Eij ∈Mn we denote the standard matrix unit with 1 at the position
(i, j) and 0 elsewhere. As any matrix X = [Xij ]

n
i,j=1 ∈ Mn can be understood as

a map [n]2 → C, (i, j) 7→ Xij , we consider its support suppX as the set of all pairs
(i, j) ∈ [n]2 such that Xij 6= 0. Moreover, for a set S ⊆ [n]2 we say that X is supported
in S if suppX ⊆ S.

– Given a ring endomorphism ω of C, we use the same symbol ω to denote the induced
ring endomorphism of Mn, defined by applying the function ω to each entry of the
underlying matrix, i.e.

ω(X) = [ω(Xij)]
n
i,j=1, ∀X = [Xij ]

n
i,j=1 ∈Mn.

– Given a binary relation ρ on [n], for a fixed i ∈ [n] by ρ(i) and ρ−1(i) we denote its
image and preimage by ρ, respectively, i.e.

ρ(i) = {j ∈ [n] : (i, j) ∈ ρ}, ρ−1(i) = {j ∈ [n] : (j, i) ∈ ρ}.
We also write ρ× for ρ \ {(1, 1), . . . , (n, n)}.

– By a quasi-order on [n] we mean a reflexive and transitive binary relation on [n].

Given a quasi-order ρ on [n] we define the unital subalgebra of Mn by
Aρ := {X ∈Mn : suppX ⊆ ρ} = span{Eij : (i, j) ∈ ρ},

which we call a structural matrix algebra (SMA) defined by the quasi-order ρ. As already
noted, structural matrix algebras are precisely the subalgebras of Mn that contain Dn (see
[12, Proposition 3.1]). We explicitly state the following result from [12], which will be used in
the proof of our main result (Theorem 3.1) on a few occasions.

Theorem 2.2 ([12, Theorem 3.4]). Let Aρ ⊆Mn be an SMA and let F ⊆ Aρ be a commuting
family of diagonalizable matrices. Then there exists S ∈ A×

ρ such that SFS−1 ⊆ Dn.

Additionally, as in [12], given a quasi-order ρ on [n], by ≈≈0 we denote the associated binary
relation on [n], given by

i ≈≈0 j
def⇐⇒ (i, j) ∈ ρ or (j, i) ∈ ρ.

Its transitive closure is denoted by ≈≈, which forms an equivalence relation. The corresponding
quotient set [n]/≈≈ is denoted by Q. We refer to each element C ∈ Q as a central class of Aρ,
since by [12, Remark 3.3] we have

Z(Aρ) = {diag(λ1, . . . , λn) ∈ Dn : (∀i, j ∈ [n])(i ≈≈ j =⇒ λi = λj)}.
Specifically, dimZ(Aρ) = |Q|. Further, for any subset S ⊆ [n] we define the corresponding
diagonal idempotent of Aρ by

(2.1) PS :=
∑
i∈S

Eii.

In particular, (PC)C∈Q is a mutually orthogonal family of idempotents in Z(Aρ) such that∑
C∈Q PC = I (consequently, (PC)C∈Q is a basis for Z(Aρ)). For each C ∈ Q we can identify

the ideal PCAρ of Aρ with the subalgebra of M|C| obtained from Aρ by deleting all rows and
columns not in C. Then PCAρ becomes a central SMA in M|C| (i.e. Z(PCAρ) consists only
of the scalar multiples of the identity in M|C|), so that Aρ is isomorphic to the direct sum of
central SMAs, i.e.

(2.2) Aρ
∼=
⊕
C∈Q

PCAρ.
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We refer to this fact as the central decomposition of Aρ.
Finally, following [8], given a quasi-order ρ on [n] we say that a map g : ρ→ C× is transitive

if it satisfies
g(i, j)g(j, k) = g(i, k), ∀(i, j), (j, k) ∈ ρ.

Every transitive map g clearly induces an (algebra) automorphism g∗ of Aρ, defined on the
basis of matrix units as
(2.3) g∗(Eij) = g(i, j)Eij , ∀(i, j) ∈ ρ.

3. Main result

We begin this section by stating our main result.
Theorem 3.1. Let Aρ ⊆Mn be an SMA and let ϕ : Aρ →Mn be an arbitrary injective map
which satisfies
(3.1) ϕ(X • Y ) = ϕ(X) • ϕ(Y ), ∀X,Y ∈ Aρ,

where • is either the standard matrix multiplication or the (normalized) Jordan product ◦.
The following conditions are equivalent:

(i) |C| ≥ 2 for all C ∈ Q (i.e. Aρ does not contain a central rank-one idempotent).
(ii) All such maps ϕ are additive.
(iii) For any such map ϕ, there exists T ∈ M×

n , a transitive map g : ρ → C×, and for
each C ∈ Q a nonzero ring endomorphism ωC of C and an assignment †C which is
either the identity (always the case when ϕ is assumed to be multiplicative) or the
transposition such that

ϕ(X) = Tg∗

(∑
C∈Q

ωC(PCX)†C

)
T−1, ∀X ∈ Aρ,

where (PC)C∈Q is a basis of mutually orthogonal idempotents of Z(Aρ) (defined by
(2.1)).

In proving Theorem 3.1, we shall utilize the following auxiliary facts.
Lemma 3.2. Let Aρ ⊆ Mn be an SMA. An idempotent P ∈ Idem(Aρ) is of rank r ∈ [n]
if and only if there exist mutually orthogonal rank-one idempotents Q1, . . . , Qr ∈ Idem(Aρ)
such that P = Q1 + · · ·+Qr. Moreover, if S ⊆ [n] and suppP ⊆ S × S, then we can further
achieve that suppQj ⊆ S × S for all j ∈ [r].
Proof. We prove only the forward implication as the converse is immediate from the orthoad-
ditivity of the rank. We focus on the second claim, as the first one follows by plugging in
S = [n].

Suppose therefore that P ∈ Idem(Aρ) is an idempotent of rank r ∈ [n] supported in S × S

for some S ⊆ [n]. We have P ⊥ P⊥
S (where PS ∈ Idem(Aρ) is defined by (2.1)), so by Theorem

2.2 there exists T ∈ A×
ρ and diagonal idempotents D,D′ ∈ Idem(Aρ) such that

P = TDT−1, P⊥
S = TD′T−1.

Since P ⊥ P⊥
S , it follows that D ⊥ D′. Set

Qj := TEjjT
−1, where (j, j) ∈ suppD

and note that {Qj : (j, j) ∈ suppD} is a family of r mutually orthogonal rank-one idempotents
summing up to P . Further, each Qj is clearly orthogonal to P⊥

S and hence supported in
S × S. □
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Lemma 3.3. Let ρ be a quasi-order on [n] and let S ⊆ ρ× be a nonempty subset. Suppose
that for each (i, j) ∈ S we have

(i, k) ∈ S, ∀k ∈ (ρ×)(i), (l, j) ∈ S, ∀l ∈ (ρ×)−1(j), and (j, i) ∈ ρ× =⇒ (j, i) ∈ S.
If for each (i, j) ∈ S we denote by C ∈ Q the central class which contains i and j, then we
have ρ× ∩ (C × C) ⊆ S.

Proof. Fix some (i, j) ∈ S. We first prove that
(j, l) ∈ S, ∀l ∈ (ρ×)(j) \ {i} and (k, i) ∈ S, ∀k ∈ (ρ×)−1(i) \ {j}.

Indeed, from (j, l) ∈ ρ× by transitivity it follows (i, l) ∈ ρ× and hence (i, l) ∈ S. It follows
(j, l) ∈ S. The same argument works for the other case.

Now by C ∈ Q denote the central class which contains i and j. Denote
T := {k ∈ [n] : ∃l ∈ [n] such that (k, l) ∈ S or (l, k) ∈ S}.

In view of the assumption and the property just established, we have k ∈ T if and only if S
contains all pairs (r, s) ∈ ρ× such that k ∈ {r, s}. Therefore, to prove the claim, it suffices to
show that C ⊆ T . Let k ∈ C be arbitrary. Since i ∈ C, by the definition of Q we have i ≈≈ k
so there exist m ∈ N and i0, i1, . . . , im ∈ [n] such that

i = i0 ≈≈0 i1 ≈≈0 · · · ≈≈0 im = k.

Since i0 = i ∈ T , we clearly have i1 ∈ T . We continue inductively and conclude k ∈ T .
□

Lemma 3.4. Let Aρ ⊆ Mn be an SMA and let ϕ : Aρ → Mn be an injective map which
satisfies (3.1), where • is either the standard matrix multiplication or the (normalized) Jordan
product ◦. Then the following holds true.
(a) ϕ preserves idempotents, i.e. ϕ(Idem(Aρ)) ⊆ Idem(Mn)
(b) For P,Q ∈ Idem(Aρ) we have P ≤ Q =⇒ ϕ(P ) ≤ ϕ(Q).
(c) For each P ∈ Idem(Aρ) we have r(ϕ(P )) = r(P ). In particular ϕ(0) = 0 and ϕ(I) = I.
(d) For P,Q ∈ Idem(Aρ) we have P ⊥ Q =⇒ ϕ(P ) ⊥ ϕ(Q).
(e) For each P ∈ Idem(Aρ) we have ϕ(P⊥) = ϕ(P )⊥.
(f) The restriction ϕ|Idem(Aρ) : Idem(Aρ) → Idem(Mn) is orthoadditive.
(g) Suppose that P1, . . . , Pr ∈ Idem(Aρ) are mutually orthogonal and let λ1, . . . , λr ∈ C. Then

ϕ

 r∑
j=1

λjPj

 =
r∑

j=1

ϕ(λjPj).

Proof. (a) This is clear.
(b) We have

ϕ(P ) = ϕ(P •Q) = ϕ(P ) • ϕ(Q), ϕ(P ) = ϕ(Q • P ) = ϕ(Q) • ϕ(P ),
which is (by Lemma 2.1 if necessary) equivalent to ϕ(P ) ≤ ϕ(Q).

(c) First of all, note that for any P,Q ∈ Idem(Mn) we have that P ≤ Q implies r(P ) ≤ r(Q)
with equality if and only if P = Q. In view of Theorem 2.2, any P ∈ Idem(Aρ) is part of
a strictly ≤-increasing chain of idempotents

0 = P0 ⪇ P1 ⪇ · · · ⪇ Pn = I

in Idem(Aρ). By (b) and the injectivity of ϕ it follows
ϕ(P0) ⪇ ϕ(P1) ⪇ · · · ⪇ ϕ(Pn)
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and hence
r(ϕ(P0)) < r(ϕ(P1)) < · · · < r(ϕ(Pn)).

Clearly, for each 0 ≤ j ≤ n we have r(ϕ(Pj)) = j = r(Pj).
(d) We have

ϕ(P ) • ϕ(Q) = ϕ(P •Q) = ϕ(0) = 0, ϕ(Q) • ϕ(P ) = ϕ(Q • P ) = ϕ(0) = 0

so (again by Lemma 2.1 if necessary) ϕ(P ) ⊥ ϕ(Q).
(e) In view of (c) and (d), we have that ϕ(P⊥) is an idempotent orthogonal to ϕ(P ) of rank

r(P⊥) = r(ϕ(P )⊥). Consequently, ϕ(P⊥) = ϕ(P )⊥.
(f) Since P ⊥ Q, we have that P +Q is again an idempotent and P,Q ≤ P +Q. Statements

(b) and (d) imply
ϕ(P ), ϕ(Q)︸ ︷︷ ︸

orthogonal

≤ ϕ(P +Q)

and hence
ϕ(P ) + ϕ(Q) ≤ ϕ(P +Q).

Finally, we have

r(ϕ(P ) + ϕ(Q)) = r(ϕ(P )) + r(ϕ(Q))
(c)
= r(P ) + r(Q) = r(P +Q)

(c)
= r(ϕ(P +Q)),

so equality follows.
(g) We have

ϕ

 r∑
j=1

λjPj

 = ϕ

 r∑
j=1

λjPj

 •

(
r∑

l=1

Pl

) = ϕ

 r∑
j=1

λjPj

 • ϕ

(
r∑

l=1

Pl

)

(f)
= ϕ

 r∑
j=1

λjPj

 •

(
r∑

l=1

ϕ(Pl)

)
=

r∑
l=1

ϕ
 r∑

j=1

λjPj

 • ϕ(Pl)


=

r∑
l=1

ϕ

 r∑
j=1

λjPj

 • Pl

 =
r∑

l=1

ϕ(λlPl).

□

Proof of Theorem 3.1. (iii) =⇒ (ii) This is obvious.

(ii) =⇒ (i) Suppose that (i) is not true. In the context of the central decomposition
(2.2) of SMAs, this precisely means that Aρ contains a central summand isomorphic to C.
Denote by ω : C → C some injective multiplicative function which is not additive (see e.g.
[22]). Then one can construct a map Aρ → Aρ which acts componentwise as the map ω on
all one-dimensional central summands of Aρ, and as the identity map on all other central
summands. Such a map is clearly multiplicative and preserves the Jordan product, but is not
additive.

(i) =⇒ (iii) This implication is the core of the theorem and its proof will be divided
into several steps. First of all, as E11, . . . , Enn is a mutually orthogonal family of rank-one
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idempotents in Aρ, by Lemma 3.4 the same is true for idempotents ϕ(E11), . . . , ϕ(Enn) in Mn.
Hence, without loss of generality we can therefore assume that

ϕ(Ejj) = Ejj , ∀j ∈ [n].

Then, by the orthoadditivity of ϕ on Idem(Aρ) (Lemma 3.4 (f)), we also have

(3.2) ϕ(P ) = P, ∀P ∈ Dn ∩ Idem(Aρ).

Claim 1. Let S ⊆ [n] and suppose that a matrix X ∈ Aρ satisfies suppX ⊆ S × S. Then
ϕ(X) satisfies the same property.

Consider the diagonal idempotent P := P⊥
S ∈ Idem(Aρ) (where PS ∈ Idem(Aρ) is defined

by (2.1)). Note that a matrix X is supported in S × S if and only if XP = PX = 0. Then
obviously X • P = P •X = 0, so

0 = ϕ(X • P ) = ϕ(X) • ϕ(P ) (3.2)
= ϕ(X) • P

and similarly 0 = P • ϕ(X) which together (by Lemma 2.1 (a)) imply the claim. ♦

Claim 2. For each central class C ∈ Q, there exists a unique injective map ωC : C → C such
that

(3.3) ϕ(λX) = ωC(λ)ϕ(X), ∀λ ∈ C and X ∈ Aρ with suppX ⊆ C × C.

Let P ∈ Idem(Aρ) be a rank-one idempotent and let λ ∈ C×. Then

ϕ(λP ) = ϕ((λP ) • P ) = ϕ(λP ) • ϕ(P ), ϕ(λP ) = ϕ(P • (λP )) = ϕ(P ) • ϕ(λP )

In view of Lemma 2.1 (b) we have

ϕ(λP ) = ϕ(P )ϕ(λP )ϕ(P ).

Since ϕ(λP ) 6= 0 by injectivity, it follows that ϕ(λP ) has rank one, and shares the same image
and kernel as ϕ(P ) so we conclude ϕ(λP ) ∝ ϕ(P ). Since ϕ(0) = 0, it follows that there exists
a map ωP : C → C such that

ϕ(λP ) = ωP (λ)ϕ(P ), ∀λ ∈ C.

Note that if P,Q ∈ Idem(Aρ) are two rank-one idempotents, we have

(3.4) P 6⊥ Q =⇒ ωP = ωQ.

Namely, supposing that P •Q 6= 0, we have

ϕ(P ) • ϕ(Q) = ϕ(P •Q) 6= 0

and hence for each λ ∈ C we have

ωQ(λ)(ϕ(P ) • ϕ(Q)) = ϕ(P ) • ϕ(λQ) = ϕ(P • (λQ))

= ϕ((λP ) •Q) = ϕ(λP ) • ϕ(Q)

= ωP (λ)(ϕ(P ) • ϕ(Q)),

so it follows ωQ = ωP . The next objective is to show that for each C ∈ Q, the map ωP is
in fact the same for all rank-one idempotents P ∈ Idem(Aρ) supported in C × C. As a first
step, note that for any two distinct i, j ∈ [n] we have

i ≈≈ j =⇒ ωEii = ωEjj .
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Indeed, by transitivity it suffices to prove this assuming i ≈≈0 j, i.e. when (i, j) ∈ ρ or (j, i) ∈ ρ.
For concreteness assume the former. Then the rank-one idempotent Eii + Eij ∈ Idem(Aρ)
satisfies

Eii 6⊥ Eii + Eij 6⊥ Ejj
(3.4)
=⇒ ωEii = ωEii+Eij = ωEjj .

Fix now some C ∈ Q and let P ∈ Idem(Aρ) be an arbitrary rank-one idempotent such that
suppP ⊆ C × C. As Tr(P ) = 1, we can pick some (i, i) ∈ suppP . We have

P 6⊥ Eii
(3.4)
=⇒ ωP = ωEii .

So indeed we see that the map P 7→ ωP is constant on the set of all rank-one idempotents of
Aρ supported in C × C, and will henceforth be denoted by ωC .
Now we prove (3.3). First of all, if X is an idempotent, then (3.3) follows from the fact that
X can be decomposed as a sum of mutually orthogonal rank-one idempotents supported in
C ×C (Lemma 3.2) and then apply the orthoadditivity of ϕ on Idem(Aρ). For general X, let
PC ∈ Idem(Aρ) be the corresponding central idempotent (defined by (2.1)). We have

ϕ(λX) = ϕ(X • (λPC)) = ϕ(X) • ϕ(λPC) = ωC(λ)ϕ(X) • ϕ(PC)

= ωC(λ)ϕ(X • PC) = ωC(λ)ϕ(X),

which implies (3.3). The injectivity of ϕ clearly implies the injectivity of ωC . ♦

Claim 3. For each central class C ∈ Q, the map ωC is multiplicative.

Fix C ∈ Q, an arbitrary i ∈ C and λ, µ ∈ C. By Claim 2 we have
ωC(λµ)Eii = ϕ((λµ)Eii) = ϕ((λEii) • (µEii)) = ϕ(λEii) • ϕ(µEii)

= ωC(λ)ωC(µ)Eii,

which implies ωC(λµ) = ωC(λ)ωC(µ), as desired. ♦

Claim 4. Fix a central class C ∈ Q. Then
ϕ(Eij) ∝ Eij , ∀(i, j) ∈ ρ ∩ (C × C)

(always the case when ϕ is assumed to be multiplicative) or
ϕ(Eij) ∝ Eji, ∀(i, j) ∈ ρ ∩ (C × C).

Fix some (i, j) ∈ ρ× ∩ (C × C). By Claim 1, we have suppϕ(Eij) ⊆ {i, j} × {i, j} so denote

ϕ(Eij) =
∑

(r,s)∈{i,j}×{i,j}

αrsErs, αrs ∈ C

On one hand we have
(3.5) 0 = ϕ(Eij • Eij) = ϕ(Eij) • ϕ(Eij) = ϕ(Eij)

2,

and on the other

ωC

(
1

2

)
ϕ(Eij)

Claim 2
= ϕ

(
1

2
Eij

)
= ϕ(Eii ◦ Eij)

(3.2)
= Eii ◦ ϕ(Eij)

=
1

2
αijEij +

1

2
αjiEji + αiiEii

(if ϕ preserves ◦) or

ϕ (Eij) = ϕ(EiiEij)
(3.2)
= Eiiϕ(Eij) = αijEij + αiiEii
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(if ϕ is multiplicative). In either case, by (3.5) it ultimately follows αii = αjj = 0 and (by
injectivity)

ϕ(Eij) ∝

{
Eij or Eji, if • = ◦
Eij , if • = ·.

It remains to prove that in the case • = ◦, the same option happens for each pair in ρ∩(C×C).
For the sake of concreteness, assume that ϕ(Eij) ∝ Eij . If (j, i) ∈ ρ, then clearly ϕ(Eji) ∝ Eji

as otherwise

ϕ

(
1

2
(Eii + Ejj)

)
= ϕ(Eij ◦ Eji) = ϕ(Eij) ◦ ϕ(Eji) ∝ Eij ◦ Eij = 0

is a contradiction. Next we show that ϕ(Eik) ∝ Eik for any k ∈ (ρ×)(i), and ϕ(Elj) ∝ Elj for
any l ∈ (ρ×)−1(j).

– Suppose that k ∈ (ρ×)(i) \ {j} and that ϕ(Eik) ∝ Eki. Then

0 = ϕ(Eij ◦ Eik) = ϕ(Eij) ◦ ϕ(Eik) ∝ Eij ◦ Eki =
1

2
Ekj

is a contradiction so it must be ϕ(Eik) ∝ Eik.
– Suppose that l ∈ (ρ×)−1(j) \ {i} and that ϕ(Elj) ∝ Ejl. Then

0 = ϕ(Eij ◦ Elj) = ϕ(Eij) ◦ ϕ(Elj) ∝ Eij ◦ Ejl =
1

2
Eil

is a contradiction so it must be ϕ(Elj) ∝ Elj .
Now we can apply Lemma 3.3 to the set

S := {(r, s) ∈ ρ× : ϕ(Ers) ∝ Ers}.

Since (i, j) ∈ S, the set S contains all (r, s) ∈ ρ× ∩ (C × C), which proves the claim. ♦

In view of Claim 4, we can define a map g : ρ → C× which to a pair (i, j) ∈ ρ assigns a
scalar g(i, j) such that

ϕ(Eij) = g(i, j)Eij or ϕ(Eij) = g(i, j)Eji

(we know that g(i, j) = 1 if i = j, and otherwise exactly one option is true).

Claim 5. For each central class C ∈ Q, the map ωC is additive.

Let C ∈ Q. By invoking Claim 4, without losing generality we can assume that

ϕ(Eij) = g(i, j)Eij , ∀(i, j) ∈ ρ ∩ (C × C).

Since |C| ≥ 2, there exists some (i, j) ∈ ρ× ∩ (C × C). For fixed x, y ∈ C consider the
idempotents

Eii + xEij , Ejj + yEij ∈ Idem(Aρ).

By Claim 1 we have
suppϕ(Eii + xEij) ⊆ {i, j} × {i, j}.

Denote
ϕ(Eii + xEij) =

∑
(r,s)∈{i,j}×{i,j}

αrsErs, αrs ∈ C.
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Suppose that ϕ preserves ◦. We have

ωC

(
1

2
x

)
g(i, j)Eij

Claim 2
= ϕ

(
1

2
xEij

)
= ϕ((Eii + xEij) ◦ Ejj)

(3.2)
= ϕ(Eii + xEij) ◦ Ejj

=
1

2
αijEij +

1

2
αjiEji + αjjEjj .

Since ϕ(Eii + xEij) is an idempotent and ω−1
C ({0}) = {0}, we conclude

αij = 2ωC

(
1

2
x

)
g(i, j), αji = αjj = 0, αii = 1.

Hence

ϕ(Eii + xEij) = Eii + 2ωC

(
1

2
x

)
g(i, j)Eij .

In an analogous way we arrive at the equality

ϕ(Ejj + yEij) = Ejj + 2ωC

(
1

2
y

)
g(i, j)Eij .

We have

ωC

(
x+ y

2

)
g(i, j)Eij

Claim 2
= ϕ

(
x+ y

2
Eij

)
= ϕ((Eii + xEij) ◦ (Ejj + yEij))

= ϕ(Eii + xEij) ◦ ϕ(Ejj + yEij)

=

(
Eii + 2ωC

(
1

2
x

)
g(i, j)Eij

)
◦
(
Ejj + 2ωC

(
1

2
y

)
g(i, j)Eij

)
=

(
ωC

(
1

2
x

)
+ ωC

(
1

2
y

))
g(i, j)Eij

and hence

ωC

(
x+ y

2

)
= ωC

(
1

2
x

)
+ ωC

(
1

2
y

)
.

As x, y ∈ C were arbitrarily chosen, this closes the proof for ◦.
If ϕ is a multiplicative map, a similar calculation implies

ϕ(Eii + xEij) = Eii + ωC (x) g(i, j)Eij , ϕ(Ejj + yEij) = Ejj + ωC (y) g(i, j)Eij

and hence

ωC(x+ y)g(i, j)Eij = ϕ((x+ y)Eij) = ϕ((Eii + xEij)(Ejj + yEij))

= (ωC(x) + ωC(y))g(i, j)Eij

which likewise implies the desired claim. ♦

It follows that each map ωC : C → C is an injective ring endomorphism of C (i.e. a
monomorphism), and hence acts as the identity on the subfield Q of rational numbers.

Claim 6. ϕ is a Q-homogeneous map.
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First of all, for λ ∈ Q we have

ϕ(λI) = ϕ

(∑
C∈Q

λPC

)
Lemma 3.4 (g)

=
∑
C∈Q

ϕ(λPC)
Claim 2
=

∑
C∈Q

ωC(λ)ϕ(PC)

(3.2)
=

∑
C∈Q

λPC = λI.

Now, for arbitrary X ∈ Aρ and λ ∈ Q we have
ϕ(λX) = ϕ(X • (λI)) = ϕ(X) • ϕ(λI) = λϕ(X).

♦

Claim 7. The map g is transitive.

Fix (i, j), (j, k) ∈ ρ. Then (i, k) ∈ ρ as well. Since i, j, k ∈ C for some central class C ∈ Q,
for concreteness assume that

ϕ(Eij) = g(i, j)Eij , ϕ(Ejk) = g(j, k)Ejk, ϕ(Eik) = g(i, k)Eik.

First assume that ϕ preserves ◦. If i 6= k, then
1

2
g(i, k)Eik

Claim 6
= ϕ

(
1

2
Eik

)
= ϕ(Eij ◦ Ejk) = ϕ(Eij) ◦ ϕ(Ejk)

=
1

2
g(i, j)g(j, k)Eik,

which implies g(i, k) = g(i, j)g(j, k). Similarly, if i = k, then
1

2
(Eii + Ejj)

Claim 6,(3.2)
= ϕ

(
1

2
(Eii + Ejj)

)
= ϕ(Eij ◦ Eji) = ϕ(Eij) ◦ ϕ(Eji)

=
1

2
g(i, j)g(j, i)(Eii + Ejj)

which implies g(i, i) = 1 = g(i, j)g(j, i). The proof is even shorter for multiplicative maps. ♦

Therefore, by passing to the map (g∗)−1 ◦ ϕ, without loss of generality we can assume that
for each C ∈ Q there exists an assignment †C ∈ {identity, transposition} (always the identity
when ϕ is multiplicative) so that

ϕ(Eij) = E†C
ij , ∀(i, j) ∈ ρ ∩ (C × C).

Claim 8. Let X ∈ Aρ and P ∈ Idem(Aρ). Then
ϕ(PXP ) = ϕ(P )ϕ(X)ϕ(P ).

This is clearly true for multiplicative maps, so assume that ϕ is ◦-preserving. One easily
verifies the equality
(3.6) (P − P⊥) ◦ (X ◦ P ) = PXP.

We also have
ϕ(P − P⊥)

Lemma 3.4
= ϕ(P ) + ϕ(−P⊥)

Claim 6 and Lemma 3.4
= ϕ(P )− ϕ(P )⊥.

Hence

ϕ(PXP )
(3.6)
= ϕ((P − P⊥) ◦ (X ◦ P )) = (ϕ(P )− ϕ(P )⊥) ◦ (ϕ(X) ◦ ϕ(P ))

(3.6)
= ϕ(P )ϕ(X)ϕ(P ).
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♦

Claim 9. For all C ∈ Q and X ∈ Aρ with suppX ⊆ C × C we have

ϕ(X) =
∑

(i,j)∈ρ∩(C×C)

ωC(Xij)E
†C
ij = ωC(X)†C .

We prove the claim for • = ◦, as the multiplicative case is similar, only simpler. Fix C ∈ Q.
For concreteness, assume that †C = id and fix some X ∈ Aρ such that suppX ⊆ C × C.
Clearly, by Claim 1, ϕ(X) is also supported in C × C. Let (i, j) ∈ C × C. If i = j, we have

ωC(Xii)Eii = ϕ(XiiEii) = ϕ(EiiXEii)
Claim 8
= Eiiϕ(X)Eii = ϕ(X)iiEii,

so ϕ(X)ii = ωC(Xii). Now assume i 6= j. Assume first that (i, j), (j, i) ∈ ρ. As ωC is
multiplicative and acts as the identity on Q, it follows

1

2
ωC(Xij)Eji = ϕ

(
1

2
XijEji

)
= ϕ

(
1

2
EjiXEji

)
= ϕ((Eji ◦X) ◦ Eji)

= (ϕ(Eji) ◦ ϕ(X)) ◦ ϕ(Eji) = (Eji ◦ ϕ(X)) ◦ Eji

=
1

2
ϕ(X)ijEji,

which implies ϕ(X)ij = ωC(Xij). Suppose now that (i, j) ∈ ρ but (j, i) /∈ ρ (so that Xji = 0).
We have

1

4
ωC(Xij)Eij = ϕ

(
1

4
XijEij

)
= ϕ

(
1

4
XijEij +

1

4
XjiEji

)
= ϕ

(
1

4
(EiiXEjj + EjjXEii)

)
= ϕ((Eii ◦X) ◦ Ejj)

= (Eii ◦ ϕ(X)) ◦ Ejj =
1

4
ϕ(X)ijEij +

1

4
ϕ(X)jiEji,

so ϕ(X)ij = ωC(Xij) and ϕ(X)ji = 0. Finally, the same calculation also shows that ϕ(X)ij =
ϕ(X)ji = 0 for each i, j ∈ C such that (i, j), (j, i) /∈ ρ. This proves the claim. ♦

We are now in the position to finish the proof of the theorem.

Claim 10. For each X ∈ Aρ, we have

ϕ(X) =
∑
C∈Q

ωC(PCX)†C .

Indeed,

ϕ(X) = ϕ(X) • I = ϕ(X) •

(∑
C∈Q

PC

)
=
∑
C∈Q

(ϕ(X) • PC)

(3.2)
=

∑
C∈Q

(ϕ(X) • ϕ(PC)) =
∑
C∈Q

ϕ(X • PC) =
∑
C∈Q

ϕ( PCX︸ ︷︷ ︸
supported in C × C

)

Claim 9
=

∑
C∈Q

ωC(PCX)†C .

♦

□
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Remark 3.5. Using the setting of Theorem 3.1, adding the additional assumption of the
continuity at a single point for the map ϕ ensures that all monomorphisms ωC : C → C are
either the identity or the complex conjugation.

Remark 3.6. In contrast to [12, Theorem 4.9], the injectivity assumption of the map ϕ in
Theorem 3.1 cannot be relaxed to the condition that only ϕ(Eij) 6= 0 for all (i, j) ∈ ρ. This
is illustrated by a constant map that assigns each matrix to a fixed nonzero idempotent.

Remark 3.7. Given a unital algebra A over a field F, it is also common to consider the
(non-normalized) Jordan product given by

x 4 y := xy + yx, ∀x, y ∈ A.
If char(F) 6= 2, note that all 4-preserving injective, surjective, or bijective maps A → B
(where B is another unital algebra over F) are automatically additive if and only if the same
holds true for the corresponding ◦-preserving maps. Indeed, if for example ϕ : A → B is
4-preserving, then the map ψ : A → B defined by

ψ(x) := 2ϕ
(x
2

)
, ∀x ∈ A

is clearly ◦-preserving. In particular, when A ⊆Mn is an SMA, Theorem 3 also applies to all
4-preserving maps ϕ : A →Mn.

We close the paper with an example which demonstrates that Theorem 3.1 cannot be
generalized to arbitrary unital subalgebras of Mn.

Example 3.8. Consider A ⊆M5 defined by

A :=




x11 0 0 0 0
x21 y z 0 0
0 0 x33 0 0
0 0 z y x45
0 0 0 0 x55

 : xij , y, z ∈ C

 .

One can easily check that A is a central subalgebra of M5. On the other hand (as in the proof
of (ii) =⇒ (i) of Theorem 3.1), choose any injective multiplicative non-additive function
ω : C → C and define a map ϕ : A →M5 by

ϕ



x11 0 0 0 0
x21 y z 0 0
0 0 x33 0 0
0 0 z y x45
0 0 0 0 x55


 :=


x11 0 0 0 0
x21 y z x45 0
0 0 x33 0 0
0 0 0 x55 0
0 0 0 0 ω(x11)

 .
It is then straightforward to verify that ϕ is an injective non-additive map that is both
multiplicative and Jordan multiplicative.

References
[1] M. Akkurt, E. Akkurt, G. P. Barker, Automorphisms of structural matrix algebras, Oper. Matrices 7

(2013), no. 2, 431–439.
[2] M. Akkurt, E. Akkurt, G. P. Barker, Jordan homomorphisms of the structural matrix algebras, Linear

Multilinear Algebra 63 (2015), no. 12, 2518–2525.
[3] M. Akkurt, G. P. Barker, M. Wild, Structural matrix algebras and their lattices of invariant subspaces,

Linear Algebra Appl. 394 (2005), 25–38.
[4] F. Beşleagă, S. Dăscălescu, Classifying good gradings on structural matrix algebras, Linear Multilinear

Algebra 67 (2019), no. 10, 1948–1957.



MULTIPLICATIVE AND JORDAN MULTIPLICATIVE MAPS ON STRUCTURAL MATRIX ALGEBRAS 15

[5] F. Beşleagă, S. Dăscălescu, Structural matrix algebras, generalized flags, and gradings, Trans. Amer. Math.
Soc. 373 (2020), no. 10, 6863–6885.

[6] R. Brusamarello, E. Z. Fornaroli, M. Khrypchenko, Jordan isomorphisms of finitary incidence algebras,
Linear Multilinear Algebra 66 (2018), no. 3, 565–579.

[7] R. Brusamarello, E. Z. Fornaroli, M. Khrypchenko, Jordan isomorphisms of the finitary incidence ring of
a partially ordered category, Colloq. Math. 159 (2020), no. 2, 285–307.

[8] S. Coelho, The automorphism group of a structural matrix algebra, Linear Algebra Appl. 195 (1993),
35–58.

[9] S. Coelho, Automorphism groups of certain structural matrix rings, Comm. Algebra 22 (1994), no. 14,
5567–5586.

[10] J. J. Garcés, M. Khrypchenko, Potent preservers of incidence algebras, Linear Algebra Appl. 635 (2022),
171–200.

[11] J. J. Garcés, M. Khrypchenko, Linear maps preserving products equal to primitive idempotents of an
incidence algebra, J. Algebra 612 (2022), 460–474.

[12] I. Gogić, M. Tomašević, Jordan embeddings and linear rank preservers of structural matrix algebras, Linear
Algebra Appl. 707 (2025), 1–48.

[13] I. Gogić, M. Tomašević, An extension of Petek-Šemrl preserver theorems for Jordan embeddings of struc-
tural matrix algebras, to appear in J. Math. Anal. Appl., https://doi.org/10.1016/j.jmaa.2025.129497.

[14] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.
[15] N. Jacobson, C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.
[16] P. S. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431 (2009), no. 1-2, 179–188.
[17] P. S. Ji, Z. Y. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl.

430 (2009), no. 1, 335–343.
[18] M. Jodeit, T. Y. Lam, Multiplicative maps of matrix semi-groups, Arch. Math. 20 (1969), 10–16.
[19] Y. B. Li, Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra 22 (2011),

743–757.
[20] F. Lu, Jordan maps on associative algebras, Comm. Algebra 31 (2003), no. 5, 2273–2286.
[21] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969),

695–698.
[22] L. Molnar, Jordan maps on standard operator algebras, Functional equations–results and advances, Adv.

Math. (Dordr.), 3 (2002) 305–320.
[23] S. Pierce, Multiplicative maps of matrix semigroups over Dedekind rings, Arch. Math. 24 (1973), 25–29.
[24] P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 1851–1855.
[25] P. Šemrl, Endomorphisms of matrix semigroups over division rings, Israel. J. Math. 163 (2008), 125–138.
[26] R. Słowik, L. van Wyk, Automorphisms of some structural infinite matrix rings, Oper. Matrices 10 (2016),

no. 1, 163–188.
[27] M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426–429.
[28] L. van Wyk, Special radicals in structural matrix rings, Comm. Algebra 16 (1988) 421–435.

I. Gogić, Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička
30, 10000 Zagreb, Croatia

Email address: ilja@math.hr

M. Tomašević, Department of Mathematics, Faculty of Science, University of Zagreb, Bi-
jenička 30, 10000 Zagreb, Croatia

Email address: mateo.tomasevic@math.hr

https://doi.org/10.1016/j.jmaa.2025.129497

	1. Introduction
	2. Notation and Preliminaries
	3. Main result
	References

