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Abstract. Let Mn(F) be the algebra of n × n matrices over a field F of characteristic
not equal to 2. If n ≥ 2, we show that an arbitrary map ϕ : Mn(F) → Mn(F) is Jordan
multiplicative, i.e. it satisfies the functional equation

ϕ(XY + Y X) = ϕ(X)ϕ(Y ) + ϕ(Y )ϕ(X), for all X,Y ∈ Mn(F)
if and only if one of the following holds: either ϕ is constant and equal to a fixed idempotent,
or there exists an invertible matrix T ∈ Mn(F) and a ring monomorphism ω : F → F such
that

ϕ(X) = Tω(X)T−1 or ϕ(X) = Tω(X)tT−1, for all X ∈ Mn(F),
where ω(X) denotes the matrix obtained by applying ω entrywise to X. In particular, any
Jordan multiplicative map ϕ : Mn(F) → Mn(F) with ϕ(0) = 0 is automatically additive. The
analogous characterization fails when F has characteristic 2.

1. Introduction

An interesting class of problems in algebra revolves around exploring the interaction be-
tween the multiplicative and additive structures of rings and algebras. A landmark result in
this area, due to Martindale [16, Corollary], states that any bijective multiplicative map from
a prime ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive,
and thus a ring isomorphism. Another fundamental result by Jodeit and Lam in [13] provides
a classification of non-degenerate multiplicative self-maps on the matrix rings Mn(R) over
a principle ideal domain R (i.e. maps that are not identically zero on all zero-determinant
matrices). Specifically, they show that for each such map ϕ : Mn(R) → Mn(R) one of the
following holds: either there exists a nonzero idempotent matrix P ∈ Mn(R) such that the
map ϕ− P is multiplicative and degenerate, or there exists an invertible matrix T ∈ Mn(R)
and a ring endomorphism ω of R such that

ϕ(X) = Tω(X)T−1 or ϕ(X) = Tω(X)∗T−1, for all X ∈Mn(R),

where ω(X) denotes the matrix obtained by applying ω entrywise to X, and (·)∗ represents the
corresponding cofactor matrix. In particular, all bijective multiplicative self-maps on Mn(R)
are automatically additive and, consequently, ring automorphisms of Mn(R). More recently,
Šemrl in [19] provided a extensive classification of the (non-degenerate) multiplicative self-
maps on matrix rings over arbitrary division rings. Additionally, in [18], Šemrl described the
structure of multiplicative bijective maps on standard operator algebras, which are subalgebras
of bounded linear maps on a complex Banach space that contain all finite-rank operators.
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On the other hand, any associative ring (algebra) A naturally inherits the structure of a
Jordan ring (algebra), via the Jordan product defined by

x � y := xy + yx, for all x, y ∈ A.
When working with algebras A over a filed F of characteristic not equal to 2, it is often more
convenient to use the normalized Jordan product, defined by

(1.1) x ◦ y :=
1

2
(xy + yx), for all x, y ∈ A.

The Jordan structure of algebras plays an important role in various areas, especially in the
mathematical foundations of quantum mechanics (see e.g. [21]). The corresponding morphisms
between rings (algebras) A and B are called Jordan homomorphisms, which are additive
(linear) maps ψ : A → B satisfying
(1.2) ϕ(x � y) = ϕ(x) � ϕ(y), for all x, y ∈ A.
For 2-torsion-free rings (algebras), condition (1.2) is equivalent to the property that ϕ pre-
servers squares, i.e.

ϕ(x2) = ϕ(x)2, for all x ∈ A,
and, trivially, to the condition
(1.3) ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y), for all x, y ∈ A,
when both A and B are F-algebras with char(F) 6= 2. The most notable examples of Jordan
homomorphisms are multiplicative and antimultiplicative maps. In fact, one of the central
problems in Jordan theory, initially addressed by Jacobson and Rickart in [10] (see also [8, 20])
is to determine the conditions on rings (algebras) that guarantee any (typically surjective)
Jordan homomorphism between rings (algebras) is either multiplicative, antimultiplicative,
or, more generally, a suitable combination of such maps. For more recent developments on
this topic, we refer to Brešar’s paper [1] and the references therein.

Furthermore, when both A and B are standard operator algebras, with dimA > 1, Molnar
classifies all bijective maps ϕ : A → B satisfying (1.3) in [17, Theorem 1]. An important
consequence of Molnar’s result is that all such maps are automatically additive. Moreover,
the same classification result applies to bijective maps ϕ satisfying (1.2). Indeed, as noted in
[7, Remark 3.7], if ϕ : A → B is �-preserving (where A and B are any F-algebras over a field
F with char(F) 6= 2), then the map ψ : A → B defined by

(1.4) ψ(x) := 2ϕ
(x
2

)
, for all x ∈ A

is evidently ◦-preserving. Referring back to Molnar’s classification theorem [17, Theorem 1],
the finite-dimensional variant asserts that any bijective map ϕ : Mn(C) → Mn(C), n ≥ 2,
satisfying (1.3) (or (1.2)) takes the form

ϕ(X) = Tω(X)T−1 or ϕ(X) = Tω(X)tT−1, for all X ∈Mn(C),
where T ∈Mn(C) is an invertible matrix and ω is a ring automorphism of C, with (·)t denoting
the matrix transposition. In our recent work [7], the authors extended both [13, Corollary]
and the finite-dimensional version of [17, Theorem 1] to the context of injective maps on
structural matrix algebras (SMAs), which are subalgebras of Mn(C) containing all diagonal
matrices (for a simple characterization of SMAs see [6, Proposition 3.1]). For additional
variants and generalizations of Molnar’s result, particularly those related to the automatic
additivity of bijective maps satisfying (1.2) or (1.3), we refer the reader to [11, 12, 14, 15] and
the references therein.
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The objective of this paper is to present a complete classification of Jordan multiplicative
self-maps on matrix algebras. In contrast to the more intricate Jodeit-Lam’s classification of
the corresponding multiplicative self-maps, the Jordan multiplicative case exhibits a notably
simpler structure:

Theorem 1.1. Let F be a field with char(F) 6= 2 and let ϕ : Mn(F) → Mn(F), n ≥ 2, be an
arbitrary map satisfying either (1.2) or (1.3). Then, one of the following holds:

(a) ϕ is a constant map, equal to a fixed idempotent, or
(b) ϕ is an additive map, and thus a Jordan ring monomorphism of Mn(F). Consequently,

there exists an invertible matrix T ∈ Mn(F) and a ring monomorphism ω : F → F
such that

(1.5) ϕ(X) = Tω(X)T−1 or ϕ(X) = Tω(X)tT−1, for all X ∈Mn(F).

The proof of Theorem 1.1 will be presented in Section §3. The approach follows a similar
strategy to that in [7], relying entirely on elementary linear algebra techniques. Let us also
highlight that a related variant of Theorem 1.1, concerning the Jordan multiplicative self-maps
on the real subspace of self-adjoint matrices in Mn(C) (with n ≥ 3), was obtained by Fošner
et al. in [4, Proposition 5.2]. We conclude the paper by demonstrating that non-constant
Jordan multiplicative maps defined on general central SMAs, the C∗-algebra of bounded
linear operators on an infinite-dimensional Hilbert space, or on Mn(F) when char(F) = 2 (the
�-multiplicative variant), are no longer automatically additive (Examples 3.6, 3.7 and 3.8).

2. Notation and Preliminaries

We now introduce some notation that will be used throughout the paper. Let F be a fixed
field of characteristic not equal to 2. By F× we denote the group of all nonzero elements in
F. Given a unital associative F-algebra A, by Idem(A) we denote the partially ordered set of
all idempotents A, where

p ≤ q if pq = qp = p.

For p ∈ Idem(A) we denote p⊥ := 1− p ∈ Idem(A). Further, for p, q ∈ Idem(A) we write
p ⊥ q if pq = qp = 0.

We use ◦ to denote the normalized Jordan product, defined by (1.1). Obviously p ∈ A is an
idempotent if and only if it is a Jordan idempotent (i.e. satisfies p ◦ p = p). We explicitly
state the following simple lemma from [7], which will be used on several occasions.

Lemma 2.1 ([7, Lemma 2.1]). Let A be an F-algebra. For p, q ∈ Idem(A) and an arbitrary
a ∈ A we have:
(a) p ◦ a = 0 if and only if pa = ap = pap = 0.
(b) p ◦ a = a if and only if pa = ap = pap = a.
(c) p ⊥ q if and only if p ◦ q = 0.
(d) p ≤ q if and only if p ◦ q = p.

Let n ∈ N be a fixed positive integer.
– By [n] we denote the set {1, . . . , n} and by ∆n the diagonal {(j, j) : j ∈ [n]} in [n]2.
– By Mn = Mn(F) we denote the algebra of n × n matrices over F and by Dn its

subalgebra consisting of all diagonal matrices.
– The rank of a matrix X ∈Mn is denoted by r(X).
– For matrices X,Y ∈Mn, we write X ∝ Y to indicate that either X = Y = 0, or they

are both nonzero and collinear.
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– As usual, for i, j ∈ [n], by Eij ∈ Mn we denote the standard matrix unit with 1 at
the position (i, j) and 0 elsewhere. For a matrix X = [Xij ]

n
i,j=1 ∈ Mn we define its

support as
suppX := {(i, j) ∈ [n]2 : Xij 6= 0}.

– Given a ring endomorphism ω of F, we use the same symbol ω to denote the induced
ring endomorphism ofMn, defined by applying ω to the each entry of the corresponding
matrix:

ω(X) = [ω(Xij)]
n
i,j=1, for all X = [Xij ]

n
i,j=1 ∈Mn.

It is well-known that Mn is a simple algebra, and hence a simple Jordan algebra (see e.g.
[9, Corollary of Theorem 1.1]). In fact, we have the following simple yet useful observation.
Proposition 2.2. For an arbitrary matrix X ∈Mn define the subset JX ⊆Mn by

JX := {(· · · (X ◦ Y1) ◦ Y2) ◦ · · · ) ◦ Yk : k ∈ N, Y1, . . . , Yk ∈Mn} .
If X 6= 0, then JX =Mn.
Proof. Fix a nonzero matrix X ∈Mn. It suffices to show that I ∈ JX .

• Suppose that Xij 6= 0 for some distinct i, j ∈ [n]. First of all, we have
XijEji = EjiXEji = (X ◦ Eji) ◦ (2Eji) ∈ JX ,

so that
Eii =

(
(XijEji) ◦

(
2

Xij
Eij

))
◦ Eii ∈ JX .

• Otherwise, suppose that X ∈ Dn and fix some i ∈ [n] such that Xii 6= 0. Then

Eii =

(
X ◦

(
1

Xii
Eii

))
◦ Eii ∈ JX .

In any case, Eii ∈ JX for some i ∈ [n] also implies Ejj ∈ JX for all j ∈ [n]. Indeed, if j 6= i:
Eji = (2Eji) ◦ Eii ∈ JX =⇒ Eii + Ejj = Eji ◦ (2Eij) ∈ JX

=⇒ Ejj = (Eii + Ejj) ◦ Ejj ∈ JX .

For r ∈ [n] denote
Dr :=

∑
j∈[r]

Ejj ∈Mn.

We prove that Dr ∈ JX for all r ∈ [n] by induction on r (then I = Dn ∈ JX). To illustrate
the process on a concrete example, consider n = 5. We have

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=A2∈JX

◦


0 −4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=B2

=


0 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

,


0 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

◦


0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=C2

=


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = D2 =⇒ D2 ∈ JX .
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1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

◦


0 0 4 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=B3

=


0 0 2 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

,


0 0 2 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=A3∈JX

◦


0 0 0 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=C3

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 = D3 =⇒ D3 ∈ JX .


1 0 0 0 0
−2 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=A4=A4◦D2∈JX

◦


0 0 0 4 0
0 0 −4 8 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=B4

=


0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

,


0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

◦


0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=C4

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 = D4 =⇒ D4 ∈ JX ,


1 0 0 0 0
−2 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=A5=A5◦D3∈JX

◦


0 0 0 0 4
0 0 0 4 8
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=B5

=


0 0 0 0 2
0 0 0 2 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

,


0 0 0 0 2
0 0 0 2 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

∈JX

◦


0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
1 0 0 0 0


︸ ︷︷ ︸

=C5

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 = D5 = I =⇒ I ∈ JX .

Of course, if p := char(F) 6= 0, all operations are performed modulo p.
We continue with the proof for general n. For r = 1 we have D1 = E11 ∈ JX . Suppose

that Dr−1 ∈ JX for some 2 ≤ r ≤ n. We prove that Dr ∈ JX . Let (pj)j∈N be a sequence in
F defined as

pj :=

{
1, if j = 1,

2 · 3j−2, if j ≥ 2,
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and

Ar :=


(∑

1≤j≤k Ejj

)
− 2

(∑
1≤j<i≤k Eij

)
, if r = 2k,(∑

1≤j≤k+1Ejj

)
− 2

(∑
1≤j<i≤k Eij

)
, if r = 2k + 1,

Br :=

−8Ek,k+1 + 4
(∑

1≤i≤j≤k piEj,2k+i−j

)
, if r = 2k,

−Ek+1,k+1 + 4
(∑

1≤i≤j≤k piEj,2k+1+i−j

)
, if r = 2k + 1,

Cr :=

{
−Ek+1,k +

∑
1≤j≤k E2k+1−j,j , if r = 2k,

−Ek+1,k+1 +
∑

1≤j≤k E2k+2−j,j , if r = 2k + 1.

We have that suppAr ⊆ [r − 1]× [r − 1], so
Ar = Ar ◦Dr−1 ∈ JX .

Hence, using the observation pj = 2(p1 + · · ·+ pj−1), for j ≥ 2, a straightforward calculation
shows that

Dr = (Ar ◦Br) ◦ Cr ∈ JX .

□
We shall also require the following elementary fact, which is a simplified version of [7,

Lemma 3.3] (applicable to general SMAs).

Lemma 2.3. Let S ⊆ [n]2 \∆n, n ≥ 2, be a nonempty subset. Suppose that for each (i, j) ∈ S
we have:
(a) (i, k) ∈ S, for all k ∈ [n] \ {i},
(b) (l, j) ∈ S, for all l ∈ [n] \ {j},
(c) (j, i) ∈ S.
Then S = [n]2 \∆n.

Proof. Fix some (i, j) ∈ S and let (k, l) ∈ [n]2 \∆n be arbitrary. If k 6= j, then

(i, j) ∈ S (b)
=⇒ (k, j) ∈ S (a)

=⇒ (k, l) ∈ S.
If l 6= i, then

(i, j) ∈ S (a)
=⇒ (i, l) ∈ S (b)

=⇒ (k, l) ∈ S.
Finally, if (k, l) = (j, i), then the claim follows directly from (c). □

3. Proof of Theorem 1.1

Let m,n ∈ N be fixed throughout the proof. Before proving our main result, we first
establish some preliminary results, starting with the following straightforward consequence of
Proposition 2.2.

Lemma 3.1. Let A be an arbitrary F-algebra and let ϕ : Mn → A be a ◦-multiplicative map
such that ϕ(X) = 0 for some nonzero matrix X ∈Mn. Then ϕ is the zero map.

Proof. By Proposition 2.2 we have JX = Mn, and therefore ϕ(X) = 0 implies that ϕ is the
zero map. □

The following lemma, which is a variant of [7, Lemma 3.4] (originally for injective ◦-
multiplicative maps on SMAs), outlines the general properties of (not necessarily injective)
◦-multiplicative maps between matrix algebras.
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Lemma 3.2. Let ϕ :Mn →Mm, be a ◦-multiplicative map. Then the following holds true:
(a) ϕ preserves idempotents, i.e. ϕ(Idem(Mn)) ⊆ Idem(Mm).
(b) For P,Q ∈ Idem(Mn) we have P ≤ Q =⇒ ϕ(P ) ≤ ϕ(Q).

Suppose now that ϕ is nonzero but ϕ(0) = 0. Then:
(c) For P,Q ∈ Idem(Mn) we have P ⊥ Q =⇒ ϕ(P ) ⊥ ϕ(Q).
(d) For each nonzero P ∈ Idem(Mn) we have r(ϕ(P )) ≥ r(P ) (in particular, m ≥ n).

Further, if m = n, then:
(e) For each P ∈ Idem(Mn) we have r(ϕ(P )) = r(P ).
(f) For each P ∈ Idem(Mn) we have ϕ(P⊥) = ϕ(P )⊥.
(g) The restriction ϕ|Idem(Mn) : Idem(Mn) → Idem(Mn) is orthoadditive, i.e.

P ⊥ Q =⇒ ϕ(P +Q) = ϕ(P ) + ϕ(Q), for all P,Q ∈ Idem(Mn).

(h) Suppose that P1, . . . , Pr ∈ Idem(Mn) are mutually orthogonal and let λ1, . . . , λr ∈ F.
Then

ϕ

 r∑
j=1

λjPj

 =

r∑
j=1

ϕ(λjPj).

Proof. (a) This is clear.
(b) We have

ϕ(P ) = ϕ(P ◦Q) = ϕ(P ) ◦ ϕ(Q)

which is by Lemma 2.1 equivalent to ϕ(P ) ≤ ϕ(Q).
(c) We have

ϕ(P ) ◦ ϕ(Q) = ϕ(P ◦Q) = ϕ(0) = 0,

so again by Lemma 2.1, ϕ(P ) ⊥ ϕ(Q).
(d) Let P ∈ Idem(Mn) be an arbitrary idempotent of rank r ≥ 1. There exist mutually

orthogonal rank-one idempotents P1, . . . , Pr ∈ Idem(Mn) such that P = P1 + · · · + Pr.
Since ϕ is not the zero map, by Lemma 3.1 ϕ cannot annihilate any nonzero matrix, so
in particular ϕ(Pj) 6= 0 for all j ∈ [r]. Therefore,

P1, . . . , Pr ≤ P
(b)
=⇒ ϕ(P1), . . . , ϕ(Pr)︸ ︷︷ ︸

mutually orthogonal by (c)

≤ ϕ(P ).

Consequently, r(ϕ(P )) ≥ r.
(e) Let P ∈ Idem(Mn) be an arbitrary idempotent. By (c) we have ϕ(P ) ⊥ ϕ(P⊥) and hence,

n = r(P ) + r(P⊥)
(d)

≤ r(ϕ(P )) + r(ϕ(P⊥)) ≤ n

and thus r(ϕ(P )) = r(P ).
(f) In view of (c) and (e), we have that ϕ(P⊥) is an idempotent orthogonal to ϕ(P ) of rank

r(P⊥) = r(ϕ(P )⊥). Consequently, ϕ(P⊥) = ϕ(P )⊥.
(g) Since P ⊥ Q, we have that P +Q is again an idempotent and P,Q ≤ P +Q. Statements

(b) and (c) imply
ϕ(P ), ϕ(Q)︸ ︷︷ ︸

orthogonal

≤ ϕ(P +Q)

and hence
ϕ(P ) + ϕ(Q) ≤ ϕ(P +Q).
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Finally, we have

r(ϕ(P ) + ϕ(Q)) = r(ϕ(P )) + r(ϕ(Q))
(e)
= r(P ) + r(Q) = r(P +Q)

(e)
= r(ϕ(P +Q)),

so equality follows.
(h) We have

ϕ

 r∑
j=1

λjPj

 = ϕ

 r∑
j=1

λjPj

 ◦

(
r∑

l=1

Pl

) = ϕ

 r∑
j=1

λjPj

 ◦ ϕ

(
r∑

l=1

Pl

)

(g)
= ϕ

 r∑
j=1

λjPj

 ◦

(
r∑

l=1

ϕ(Pl)

)
=

r∑
l=1

ϕ
 r∑

j=1

λjPj

 ◦ ϕ(Pl)


=

r∑
l=1

ϕ

 r∑
j=1

λjPj

 ◦ Pl

 =

r∑
l=1

ϕ(λlPl).

□

In the sequel, K will denote the prime subfield of F, i.e. K is generated by the multiplicative
identity of F (see e.g. [5]). Note that K ∼= Q if char(F) = 0, or K ∼= Z/pZ if p = char(F) > 0.

Lemma 3.3. Let ϕ :Mn →Mn be a nonzero ◦-multiplicative map such that ϕ(0) = 0. There
exists a unique multiplicative map ω : F → F such that
(3.1) ϕ(λX) = ω(λ)ϕ(X), for all λ ∈ F and X ∈Mn.

Further, if n ≥ 2, the map ω : F → F is a ring monomorphism. In particular, ϕ is K-
homogeneous.

Proof. In view of Lemmas 3.1 and 3.2 (c) and (e), ϕ(E11), . . . , ϕ(Enn) are mutually orthogonal
rank-one idempotents and therefore can be simultaneously diagonalized. Hence, by passing
to map T−1ϕ(·)T , for a suitable invertible matrix T ∈ Mn, without loss of generality we can
assume that
(3.2) ϕ(Ejj) = Ejj for all j ∈ [n].

Obviously ϕ(F×Ejj) 6= {0} (again by Lemma 3.1), for all j ∈ [n]. Note that for each X ∈Mn

and S ⊆ [n] we have
(3.3) suppX ⊆ S × S =⇒ suppϕ(X) ⊆ S × S.

Indeed, denote the diagonal idempotent P :=
∑

j∈[n]\S Ejj and note that a matrix X ∈ Mn

is supported in S × S if and only if XP = PX = 0. In that case, obviously X ◦ P = 0, so

0 = ϕ(X ◦ P ) = ϕ(X) ◦ ϕ(P ) Lemma 3.2(g), (3.2)
= ϕ(X) ◦ P

and hence Lemma 2.1 (a) implies the claim.
Let j ∈ [n] and λ ∈ F×. Then

ϕ(λEjj) = ϕ((λEjj) ◦ Ejj) = ϕ(λEjj) ◦ Ejj .

In view of Lemma 2.1 (b) we have
ϕ(λEjj) = Ejjϕ(λEjj)Ejj = ϕ(λEjj)jjEjj .
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Since ϕ(0) = 0, it follows that there exists a unique map ωj : F → F such that

ϕ(λEjj) = ωj(λ)ϕ(Ejj), for all λ ∈ F.

Fix distinct i, j ∈ [n]. For λ ∈ F× by (3.2) we have

ωi(2λ)ϕ(Eij) ◦ Eii = ϕ(Eij ◦ (2λEii)) = ϕ(λEij) = ϕ(Eij ◦ (2λEjj))

= ωj(2λ)ϕ(Eij) ◦ Ejj .

Note that (3.3) implies that suppϕ(λEij) ⊆ {i, j} × {i, j}. By ϕ(λEij)
2 = 0 and Lemma 3.1

it follows that

(3.4) ϕ(λEij) ∝ Eij or Eji.

Returning to the previous equation, it follows ωi(2λ) = ωj(2λ). We conclude ωi = ωj so there
exists a unique globally defined map ω : F → F such that

ϕ(λEjj) = ω(λ)Ejj , for all λ ∈ F, j ∈ [n].

Now we prove (3.1). For λ ∈ F we have

ϕ(λI) = ϕ

∑
j∈[n]

λEjj

 Lemma 3.2 (h)
=

∑
j∈[n]

ϕ(λEjj) =
∑
j∈[n]

ω(λ)ϕ(Ejj)

(3.2)
= ω(λ)I.

Now, for arbitrary X ∈Mn and λ ∈ F we have

ϕ(λX) = ϕ(X ◦ (λI)) = ϕ(X) ◦ ϕ(λI) = λϕ(X).

For some i ∈ [n] and λ, µ ∈ F (again using (3.2)) we have

ω(λµ)Eii = ϕ((λµ)Eii) = ϕ((λEii) ◦ (µEii)) = ϕ(λEii) ◦ ϕ(µEii)

= ω(λ)ω(µ)Eii,

which implies ω(λµ) = ω(λ)ω(µ), so ω is a multiplicative map.
Assume now that n ≥ 2. The argument that ω is additive is similar to the proof of [7,

Theorem 3.1, Claim 5]. For completeness, we include the details. Let i, j ∈ [n] be distinct.
For fixed x, y ∈ F consider the idempotents

Eii + xEij , Ejj + yEij ∈ Idem(Mn).

By (3.3) we see that
suppϕ(Eii + xEij) ⊆ {i, j} × {i, j}.

Denote
ϕ(Eii + xEij) =

∑
(r,s)∈{i,j}×{i,j}

αrsErs, αrs ∈ F.

From now on, in view of (3.4) assume that ϕ(Eij) = βEij for some β ∈ F× as the other case
(i.e. ϕ(Eij) = βEji) is similar. We have

ω

(
1

2
x

)
βEij = ϕ

(
1

2
xEij

)
= ϕ((Eii + xEij) ◦ Ejj)

(3.2)
= ϕ(Eii + xEij) ◦ Ejj

=
1

2
αijEij +

1

2
αjiEji + αjjEjj .
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Since ϕ(Eii + xEij) is an idempotent and ω−1({0}) = {0}, we conclude

αij = 2ω

(
1

2
x

)
β, αji = αjj = 0, αii = 1.

Hence
ϕ(Eii + xEij) = Eii + 2ω

(
1

2
x

)
βEij .

In an analogous way we arrive at the equality

ϕ(Ejj + yEij) = Ejj + 2ω

(
1

2
y

)
βEij .

We have

ω

(
x+ y

2

)
βEij = ϕ

(
x+ y

2
Eij

)
= ϕ((Eii + xEij) ◦ (Ejj + yEij))

= ϕ(Eii + xEij) ◦ ϕ(Ejj + yEij)

=

(
Eii + 2ω

(
1

2
x

)
βEij

)
◦
(
Ejj + 2ω

(
1

2
y

)
βEij

)
=

(
ω

(
1

2
x

)
+ ω

(
1

2
y

))
βEij

and hence
ω

(
x+ y

2

)
= ω

(
1

2
x

)
+ ω

(
1

2
y

)
.

Since x, y ∈ F were arbitrary, this concludes the proof. □
The proof of the next lemma follows exactly the same lines as the proof of [7, Theorem 3.1,

Claim 8], so we omit it.

Lemma 3.4. Let ϕ :Mn →Mn, n ≥ 2, be a ◦-multiplicative map such that ϕ(0) = 0. Then
ϕ(PXP ) = ϕ(P )ϕ(X)ϕ(P ), for all X ∈Mn, P ∈ Idem(Mn).

Proof of Theorem 1.1. First, as noted in the introduction (and following [7, Remark 3.7]), it
suffices to prove Theorem 1.1 for ◦-preserving maps, since the transformation (1.4) allows us
to extend the result to �-preserving maps. Therefore, assume that ϕ : Mn → Mn, n ≥ 2, is
◦-multiplicative.

Suppose that ϕ is not the zero map. Since ϕ(0) is an idempotent, without loss of generality
we can assume that

ϕ(0) =

[
Ir 0
0 0

]
, for some 0 ≤ r ≤ n.

Assume that r ≥ 1. Then we claim that ϕ is the constant map equal to ϕ(0). Indeed, first
note that for all X ∈Mn we have

ϕ(0) = ϕ(X ◦ 0) = ϕ(X) ◦ ϕ(0)
which easily implies that

(3.5) ϕ(X) =

[
Ir 0
0 ψ(X)

]
,

for some uniquely determined matrix ψ(X) ∈ Mn−r. In particular, if r = n, it follows that
ϕ is the constant map globally equal to I. Otherwise, it makes sense to consider the map
ψ :Mn →Mn−r defined by (3.5), which is again ◦-multiplicative, and satisfies ψ(0) = 0. Since
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n − r < n, Lemma 3.2 (d) implies that ψ must be the zero map, and therefore ϕ(X) = ϕ(0)
for all X ∈Mn.

Suppose now that r = 0, i.e. that ϕ(0) = 0. We claim that ϕ takes the form given in (1.5),
and as a result, it is a nonzero additive map. As in Lemma 3.3 and its proof, without loss of
generality we can assume that

ϕ(Ejj) = Ejj , for all j ∈ [n]

and consequently, by Lemma 3.2 (g),

(3.6) ϕ(P ) = P, for all P ∈ Idem(Mn) ∩ Dn.

As in (3.4) for λ = 1, under these assumptions we also obtain

ϕ(Eij) ∝ Eij or Eji.

We claim that the same option holds throughout. We follow a similar approach as outlined
in the proof of [7, Theorem 3.1, Claim 4]. For completeness we include details. Consider the
set

S := {(r, s) ∈ [n]2 \∆n : ϕ(Ers) ∝ Ers}.
For the sake of concreteness, assume that (i, j) ∈ S. In that case clearly ϕ(Eji) ∝ Eji, as
otherwise

ϕ

(
1

2
(Eii + Ejj)

)
= ϕ(Eij ◦ Eji) = ϕ(Eij) ◦ ϕ(Eji) ∝ Eij ◦ Eij = 0

is a contradiction with Lemma 3.1, so (j, i) ∈ S. The next objective is to show that (i, k) ∈ S
for any k ∈ [n] \ {i}, and (l, j) ∈ S for any l ∈ [n] \ {j}.

– Assume that k ∈ [n] \ {i, j} and that ϕ(Eik) ∝ Eki. Then

0 = ϕ(Eij ◦ Eik) = ϕ(Eij) ◦ ϕ(Eik) ∝ Eij ◦ Eki =
1

2
Ekj

is a contradiction, so it must be ϕ(Eik) ∝ Eik.
– Assume that l ∈ [n] \ {i, j} and that ϕ(Elj) ∝ Ejl. Then

0 = ϕ(Eij ◦ Elj) = ϕ(Eij) ◦ ϕ(Elj) ∝ Eij ◦ Ejl =
1

2
Eil

is a contradiction, so that ϕ(Elj) ∝ Elj .
By Lemma 2.3 it follows that S = [n]2 \∆n, so there exists a map g : [n]2 → F× such that

ϕ(Eij) = g(i, j)Eij , for all i, j ∈ [n].

We claim that the map g is transitive in the sense of [3], i.e. it satisfies

g(i, j)g(j, k) = g(i, k), for all (i, j), (j, k) ∈ [n]2.

Fix (i, j), (j, k) ∈ [n]2. If i 6= k, then

1

2
g(i, k)Eik

Lemma 3.3
= ϕ

(
1

2
Eik

)
= ϕ(Eij ◦ Ejk) = ϕ(Eij) ◦ ϕ(Ejk)

=
1

2
g(i, j)g(j, k)Eik,
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which implies g(i, k) = g(i, j)g(j, k). On the other hand, if i = k, then
1

2
(Eii + Ejj)

Lemma 3.3,(3.6)
= ϕ

(
1

2
(Eii + Ejj)

)
= ϕ(Eij ◦ Eji) = ϕ(Eij) ◦ ϕ(Eji)

=
1

2
g(i, j)g(j, i)(Eii + Ejj)

which implies g(i, i) = 1 = g(i, j)g(j, i). Following [3], denote by
g∗ :Mn →Mn, g∗(Eij) := g(i, j)Eij

the induced (algebra) automorphism of Mn. Since every automorphism of Mn is inner (see
e.g. [2, Theorem 1.30]), by passing to the map X 7→ (g∗)−1(ϕ(X)), without loss of generality
we can assume that

ϕ(Eij) = Eij , for all (i, j) ∈ [n]2.

In view of Lemma 3.3, denote by ω : F → F the induced ring monomorphism that satisfies
(3.1). We claim that

ϕ(X) = ω(X), for all X ∈Mn.

Fix (i, j) ∈ [n]2. If i = j, we have

ω(Xii)Eii = ϕ(XiiEii) = ϕ(EiiXEii)
Lemma 3.4

= Eiiϕ(X)Eii = ϕ(X)iiEii,

so ϕ(X)ii = ω(Xii). Now assume i 6= j. Since ω is multiplicative and acts as the identity on
the prime subfield K ⊆ F, we obtain

1

2
ω(Xij)Eji = ϕ

(
1

2
XijEji

)
= ϕ

(
1

2
EjiXEji

)
= ϕ((Eji ◦X) ◦ Eji)

= (ϕ(Eji) ◦ ϕ(X)) ◦ ϕ(Eji) = (Eji ◦ ϕ(X)) ◦ Eji

=
1

2
ϕ(X)ijEji.

This implies ϕ(X)ij = ω(Xij), which completes the proof of the theorem. □

It is also worth noting that the first part of the proof of Theorem 1.1 immediately yields
the following corollary:

Corollary 3.5. Let m < n. The map ϕ :Mn →Mm is Jordan multiplicative if and only if it
is constant and equal to a fixed idempotent.

In contrast to the matrix algebraMn, the next two examples illustrate that the non-constant
Jordan multiplicative maps defined on general central SMAs (i.e. those with a trivial centre),
or on the C∗-algebra B(H) of bounded linear operators on an infinite-dimensional Hilbert
space H, are no longer automatically additive.

Example 3.6. Let Tn ⊆Mn be the upper-triangular subalgebra of Mn. Choose an arbitrary
non-additive multiplicative map ω : F → F (e.g. ω(x) := x2) and define a map

ϕ : Tn → Tn,


x11 x12 · · · x1n
0 x22 · · · x2n
...

... . . . ...
0 0 · · · xnn

 7→


ω(x11) 0 · · · 0

0 ω(x22) · · · 0
...

... . . . ...
0 0 · · · ω(xnn)

 .
Then ϕ is clearly ◦-multiplicative, but is neither constant nor additive.
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Example 3.7. Let H be an infinite-dimensional Hilbert space. In view of the identification
H ∼= H ⊕H, for any fixed nonzero idempotent P ∈ B(H), the map

ϕ : B(H) → B(H ⊕H), X 7→
[
X 0
0 P

]
is ◦-multiplicative, but is neither constant nor additive.

Finally, the next simple example demonstrates that Theorem 1.1 does not extend to �-
multiplicative maps over fields F of characteristic two.

Example 3.8. Assume that char(F) = 2 and n ≥ 2. Fix an arbitrary trace-one matrix
A ∈Mn(F) and define a map ϕ :Mn(F) →Mn(F) that sends A to a fixed nonzero matrix and
all other matrices to zero. As the trace of any matrix in Mn(F) of the form X �Y = XY +Y X
is zero, it follows that ϕ is �-multiplicative, but is neither constant nor additive.
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