CLASSIFICATION OF JORDAN MULTIPLICATIVE MAPS ON MATRIX
ALGEBRAS

ILJA GOGIC, MATEO TOMASEVIC

ABSTRACT. Let M, (F) be the algebra of n x n matrices over a field F of characteristic
not equal to 2. If n > 2, we show that an arbitrary map ¢ : M, (F) — M, (F) is Jordan
multiplicative, i.e. it satisfies the functional equation

O(XY +YX)=0(X)p(Y) + d(Y)p(X), forall X,Y € M,(F)

if and only if one of the following holds: either ¢ is constant and equal to a fixed idempotent,
or there exists an invertible matrix 7' € M, (F) and a ring monomorphism w : F — F such
that

H(X)=Tw(X)T™" or ¢(X)=Tw(X)'T™", forall X e M,(F),
where w(X) denotes the matrix obtained by applying w entrywise to X. In particular, any
Jordan multiplicative map ¢ : M, (F) — M, (F) with ¢(0) = 0 is automatically additive. The
analogous characterization fails when F has characteristic 2.

1. INTRODUCTION

An interesting class of problems in algebra revolves around exploring the interaction be-
tween the multiplicative and additive structures of rings and algebras. A landmark result in
this area, due to Martindale [[16, Corollary], states that any bijective multiplicative map from
a prime ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive,
and thus a ring isomorphism. Another fundamental result by Jodeit and Lam in [13] provides
a classification of non-degenerate multiplicative self-maps on the matrix rings M, (R) over
a principle ideal domain R (i.e. maps that are not identically zero on all zero-determinant
matrices). Specifically, they show that for each such map ¢ : M,(R) — M,(R) one of the
following holds: either there exists a nonzero idempotent matrix P € M,(R) such that the
map ¢ — P is multiplicative and degenerate, or there exists an invertible matrix 7" € M, (R)
and a ring endomorphism w of R such that

H(X) =Tw(X)T™? or  ¢(X)=Tw(X)*T™t, forall X € M,(R),

where w(X) denotes the matrix obtained by applying w entrywise to X, and (-)* represents the
corresponding cofactor matrix. In particular, all bijective multiplicative self-maps on M, (R)
are automatically additive and, consequently, ring automorphisms of M, (R). More recently,
Semrl in [[19] provided a extensive classification of the (non-degenerate) multiplicative self-
maps on matrix rings over arbitrary division rings. Additionally, in [18], Semrl described the
structure of multiplicative bijective maps on standard operator algebras, which are subalgebras
of bounded linear maps on a complex Banach space that contain all finite-rank operators.
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On the other hand, any associative ring (algebra) .4 naturally inherits the structure of a
Jordan ring (algebra), via the Jordan product defined by

zoy:=zy+yx, forallz,ye A

When working with algebras A over a filed F of characteristic not equal to 2, it is often more
convenient to use the normalized Jordan product, defined by

1
(1.1) xoy:= i(xy—kya?)7 for all z,y € A.

The Jordan structure of algebras plays an important role in various areas, especially in the
mathematical foundations of quantum mechanics (see e.g. [21]). The corresponding morphisms
between rings (algebras) A and B are called Jordan homomorphisms, which are additive
(linear) maps ¥ : A — B satisfying

(1.2) d(xoy)=¢(x)op(y), forallz,ye A

For 2-torsion-free rings (algebras), condition (@) is equivalent to the property that ¢ pre-
servers squares, i.e.

o(z?) = ¢p(z)?, for all z € A,
and, trivially, to the condition

(1.3) p(zoy) = d(x)op(y), forallz,ye A,

when both A and B are F-algebras with char(F) # 2. The most notable examples of Jordan
homomorphisms are multiplicative and antimultiplicative maps. In fact, one of the central
problems in Jordan theory, initially addressed by Jacobson and Rickart in [10] (see also [, 20])
is to determine the conditions on rings (algebras) that guarantee any (typically surjective)
Jordan homomorphism between rings (algebras) is either multiplicative, antimultiplicative,
or, more generally, a suitable combination of such maps. For more recent developments on
this topic, we refer to Bresar’s paper [l and the references therein.

Furthermore, when both A and B are standard operator algebras, with dim A > 1, Molnar
classifies all bijective maps ¢ : A — B satisfying (B) in [17, Theorem 1]. An important
consequence of Molnar’s result is that all such maps are automatically additive. Moreover,
the same classification result applies to bijective maps ¢ satisfying (@; Indeed, as noted in
[7, Remark 3.7], if ¢ : A — B is o-preserving (where A and B are any F-algebras over a field
F with char(F) # 2), then the map ¢ : A — B defined by

(1.4) W(z) =20 (g) , forallze A

is evidently o-preserving. Referring back to Molnar’s classification theorem [17, Theorem 1],
the finite-dimensional variant asserts that any bijective map ¢ : M, (C) — M,(C), n > 2,
satisfying (B) (or (@)) takes the form

H(X)=Tw(X)T™' or ¢X)=TwX)T™, forall X € M,(C),

where T' € M,,(C) is an invertible matrix and w is a ring automorphism of C, with (-)* denoting
the matrix transposition. In our recent work [{7], the authors extended both [13, Corollary]
and the finite-dimensional version of [17, Theorem 1] to the context of injective maps on
structural matrix algebras (SMAs), which are subalgebras of M,,(C) containing all diagonal
matrices (for a simple characterization of SMAs see [0, Proposition 3.1]). For additional
variants and generalizations of Molnar’s result. particularly those related to the automatic
additivity of bijective maps satisfying ([L.2) or (ﬁ), we refer the reader to [11, 12, [14, [L5] and
the references therein.
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The objective of this paper is to present a complete classification of Jordan multiplicative
self-maps on matrix algebras. In contrast to the more intricate Jodeit-Lam’s classification of
the corresponding multiplicative self-maps, the Jordan multiplicative case exhibits a notably
simpler structure:

Theorem 1.1. Let F be a field with char(F) # 2 and let ¢ : M, (F) — M,(F), n > 2, be an
arbitrary map satisfying either ([L.2) or ([L.3). Then, one of the following holds:

(a) ¢ is a constant map, equal to a fized idempotent, or

(b) ¢ is an additive map, and thus a Jordan ring monomorphism of M,(F). Consequently,
there exists an invertible matriv T € M,(F) and a ring monomorphism w : F — F
such that

(1.5) H(X)=TwX)T' or ¢X)=TwX)T™, forall X € M,(F).

The proof of Theorem EI will be presented in Section §E The approach follows a similar
strategy to that in [[7], relying entirely on elementary linear algebra techniques. Let us also
highlight that a related variant of Theorem [L.1], concerning the Jordan multiplicative self-maps
on the real subspace of self-adjoint matrices in M, (C) (with n > 3), was obtained by Fosner
et al. in [4, Proposition 5.2]. We conclude the paper by demonstrating that non-constant
Jordan multiplicative maps defined on general central SMAs, the C*-algebra of bounded
linear operators on an infinite-dimensional Hilbert space, or on M, (F) when char the
o-multiplicative variant), are no longer automatically additive (Examples @ and @

2. NOTATION AND PRELIMINARIES

We now introduce some notation that will be used throughout the paper. Let F be a fixed
field of characteristic not equal to 2. By F* we denote the group of all nonzero elements in
F. Given a unital associative F-algebra A, by Idem(.A) we denote the partially ordered set of
all idempotents A, where

p<q if  pg=qp=p.
For p € Idem(A) we denote p := 1 — p € Idem(A). Further, for p, ¢ € Idem(A) we write

plqg if  pg=gp=0.
We use o to denote the normalized Jordan product, defined by (EI) Obviously p € A is an
idempotent if and only if it is a Jordan idempotent (i.e. satisfies p o p = p). We explicitly
state the following simple lemma from [[7], which will be used on several occasions.

Lemma 2.1 ([7, Lemma 2.1]). Let A be an F-algebra. For p,q € Idem(A) and an arbitrary
a € A we have:

(a) poa=0 if and only if pa = ap = pap = 0.
(b) poa=a if and only if pa = ap = pap = a.
(¢) p L qifand only if poq=0.
(d) p < qif and only if poq=p.

Let n € N be a fixed positive integer.
— By [n] we denote the set {1,...,n} and by A, the diagonal {(j,5) : j € [n]} in [n]?.
- By M,, = M,(F) we denote the algebra of n x n matrices over F and by D, its
subalgebra consisting of all diagonal matrices.
— The rank of a matrix X € M, is denoted by r(X).
— For matrices X,Y € M, we write X o Y to indicate that either X =Y = 0, or they
are both nonzero and collinear.
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— As usual, for i,j € [n], by E;; € M, we denote the standard matrix unit with 1 at
the position (4,j) and 0 elsewhere. For a matrix X = [X;;]!'._; € M, we define its
support as

.
Z?]:

supp X = {(i,7) € [n]” : Xi; # O}.

— Given a ring endomorphism w of F, we use the same symbol w to denote the induced
ring endomorphism of M,,, defined by applying w to the each entry of the corresponding
matrix:

w(X) = [w(Xiy)li =1, forall X = [Xy)i'_y € M.
It is well-known that M,, is a simple algebra, and hence a simple Jordan algebra (see e.g.
[9, Corollary of Theorem 1.1]). In fact, we have the following simple yet useful observation.

Proposition 2.2. For an arbitrary matriz X € M, define the subset Jx C M, by
Ix ={((XoY)oYs)o--- )oYy :keN, Yi,....Yr € M,}.
If X #0, then Jx = M,.
Proof. Fix a nonzero matrix X € M,. It suffices to show that I € Jx.
e Suppose that X;; # 0 for some distinct 4, j € [n]. First of all, we have
XijEji = Eji X Ej; = (X o Eji) o (2Ej;) € Jx,
so that

2
Ei; = <(Xz‘jEjz‘) ° <X Ez)) oEj € Jx.
ij

e Otherwise, suppose that X € D,, and fix some i € [n] such that X;; # 0. Then

1
Ei; = (X ° <Eu>) ok € Ux.
Xii

In any case, Ey; € Jx for some i € [n] also implies Ej; € Jx for all j € [n]. Indeed, if j # i
Eji = (2Ej) o By € Ix = Ei+ Ejj = Eji0 (2E;5) € Jx

— Ejj = (Ei + Ejj) 0 Ejj € Tx.

For r € [n] denote
D, = Z Ejj € M,.

JEr]
We prove that D, € Jx for all r € [n] by induction on r (then I = D,, € Jx). To illustrate
the process on a concrete example, consider n = 5. We have

1 0 00O 0 -4 0 0 O 0 -2 0 0 O
0 00 0O 0O 0 0 0 O 0O 0 0 0 O
0 00 0 OfofO O O O O)=1]0 0 0 0 Of,
0 00 0O 0O 0 0 0 O 0O 0 0 0 O
0 00 0O 0O 0 0 0 O 0O 0 0 0O
=AxeTx =B €Jx

0 -2 0 0 O 0O 0 0 0 0 1 0 0 0O

0O 0 0 0 O -1 0 0 0 O 01 0 0O

0O 0 0 0 Ojlo|]0O O OO O=1]1000 0 0|=Dy = DgyeJx.

0O 0 0 0 O 0O 0 0 0 0 00 0 0O

0O 0 0 0 O 0O 0 0 0 0 00 0 0O

€eJx =C>
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We continue with the proof for general n. For » = 1 we have D;
that D,_; € Jx for some 2 < 7 < n. We prove that D, € Jx. Let (p;)jen be a sequence in

Of course, if p := char(F) # 0, all operations are performed modulo p.
F defined as
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and
A = Zlgjgk Ejj) -2 <Zl§j<i§k Eij) ) if r =2k,
T .
21§j§k+1 Ejj) —2 (Zlﬁj<i§k Eij) ) ifr=2k+1,
B. —8E k+1 + 4 (Z1§i§j§k piEj,Qk-i-i—j) ; if r = 2k,
roe=
_Ek+1,k+1 +4 (ZlgigjgkpiEj’QkJrlJri,j) , if r =2k + 1’
C. = —Epy1e + Zlgjgk Eokt1-j,55 if r = 2k,
' —Elt1 k41 + E1§jgk Eopio_j i, ifr=2k+1.

We have that supp A, C [r — 1] x [r — 1], so
A=A, 0D,_1 € Jx.
Hence, using the observation p; = 2(p1 + --- + pj_1), for j > 2, a straightforward calculation
shows that
D, = (ATOBT‘) oCy € Jx.
O

We shall also require the following elementary fact, which is a simplified version of [,
Lemma 3.3] (applicable to general SMAs).

Lemma 2.3. Let S C [n]2\ A,,n > 2, be a nonempty subset. Suppose that for each (i,7) € S
we have:

(a) (i,k) €S, forallk € [n]\ {i},

(b) (1,j) €S, foralll € [n]\ {j},

(c) (j,i) € S.

Then S = [n)?\ A,.

Proof. Fix some (i,5) € S and let (k,1) € [n]?\ A, be arbitrary. If k # j, then

,j)eS B (ki) es XL k1) es.

If [ # i, then

i,5)es 2% (ihes & ki)es.

Finally, if (k,1) = (j,7), then the claim follows directly from (c). O

3. PROOF OF THEOREM

Let m,n € N be fixed throughout the proof. Before proving our main result, we first
establish some preliminary results, starting with the following straightforward consequence of
Proposition R.2.

Lemma 3.1. Let A be an arbitrary F-algebra and let ¢ : M,, — A be a o-multiplicative map
such that ¢(X) = 0 for some nonzero matrix X € M,,. Then ¢ is the zero map.

Proof. By Proposition we have Jx = M, and therefore ¢(X) = 0 implies that ¢ is the
Z€ero map. Il

The following lemma, which is a variant of [, Lemma 3.4] (originally for injective o-
multiplicative maps on SMAs), outlines the general properties of (not necessarily injective)
o-multiplicative maps between matrix algebras.
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Lemma 3.2. Let ¢ : M,, — M,,, be a o-multiplicative map. Then the following holds true:
(a) ¢ preserves idempotents, i.e. p(Idem(My,)) C Idem(M,,).
(b) For P,Q € Idem(M,,) we have P < Q = ¢(P) < ¢(Q).
Suppose now that ¢ is nonzero but ¢(0) = 0. Then:
(c) For P,Q € Idem(M,,) we have P L. Q = ¢(P) L ¢(Q).
(d) For each nonzero P € Idem(M,,) we have r(¢p(P)) > r(P) (in particular, m > n).
Further, if m = n, then:
(e) For each P € Idem(M,,) we have r(¢(P)) = r(P).
(f) For each P € Idem(M,,) we have ¢(P+) = ¢(P)*.
(9) The restriction @ligem(rr,) : Idem(M,) — Idem(M,,) is orthoadditive, i.e.

P1LQ = ¢(P+Q)=0¢(P)+ ¢(Q), forall P,Q € Idem(M,).
(h) Suppose that Py, ..., P, € Idem(M,) are mutually orthogonal and let \y,..., A\, € F.

Then
¢ (Z /\jpj) => 6\ Py).
=1 j=1

Proof. (a) This is clear.
(b) We have
¢(P) = ¢(PoQ) =¢(P)o¢(Q)

which is by Lemma @ equivalent to ¢(P) < ¢(Q).

(c) We have
P(P) o p(Q) = ¢(P o Q) = ¢(0) =0,

so again by Lemma @, o(P) L o(Q).
(d) Let P € Idem(M,) be an arbitrary idempotent of rank r > 1. There exist mutually

orthogonal rank-one idempotents P,.... P. € Idem(M,) such that P = P, + --- + P,.

Since ¢ is not the zero map, by Lemma ¢ cannot annihilate any nonzero matrix, so
in particular ¢(P;) # 0 for all j € [r]. Therefore,

Pi,...P,<P L G(P).....6(P) <o(P).

-/

mutually orthogonal by (c)

Consequently, r(¢(P)) > r.
(e) Let P € Idem(M,,) be an arbitrary idempotent. By (c) we have ¢(P) L ¢(P~+) and hence,
(d)
n=r(P)+r(P) < r(¢(P)) +r(¢(PF)) <n
and thus r(¢(P)) = r(P).
(f) In view of (c) and (e), we have that ¢(P+) is an idempotent orthogonal to ¢(P) of rank
r(PL) = r(¢(P)*). Consequently, ¢(P+) = ¢(P)*.
(g) Since P L @, we have that P+ @ is again an idempotent and P,Q < P + ). Statements
(b) and (c) imply
9(P),9(Q) < (P +Q)
—_——

orthogonal

and hence

P(P) +6(Q) < (P + Q).
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Finally, we have

r((P) + 6(Q)) = r(@(P)) +r(¢(Q) L r(P) +r(@Q) = r(P + Q)

(e)

= r(¢(P+Q)),
so equality follows.
(h) We have
S{Y NP = | D NP O<Za))¢ > AP o¢<ZPl)
j=1 j=1 =1 j=1 I=1
2y Y AP e (Z ¢(Pz)> = ¢ [ D AP | oo(P)
j=1 =1 1=1 j=1

T

=Y o (D NP e | =D d(NP).
I=1 j=1 =1

g

In the sequel, K will denote the prime subfield of IF, i.e. K is generated by the multiplicative
identity of F (see e.g. [B]). Note that K = Q if char(F) = 0, or K = Z/pZ if p = char(F) > 0.

Lemma 3.3. Let ¢ : M,, — M, be a nonzero o-multiplicative map such that $(0) = 0. There
exists a unique multiplicative map w : F — F such that

(3.1) d(AX) = w\)$(X), forall A\ €T and X € M,.

Further, if n > 2, the map w : F — F is a ring monomorphism. In particular, ¢ is K-
homogeneous.

Proof. In view of Lemmas @ and @ (c) and (e), ¢(F11), - - ., (Fnn) are mutually orthogonal
rank-one idempotents and therefore can be simultaneously diagonalized. Hence, by passing
to map T~ 1¢(-)T, for a suitable invertible matrix T' € M,,, without loss of generality we can
assume that

(32) qb(E]]) = Ej' for all j € [n]

Obviously ¢(F*Ej;) # {0} (again by Lemma @), for all j € [n]. Note that for each X € M,,
and S C [n] we have

(3.3) suppX € S xS = suppop(X) C S xS.
Indeed, denote the diagonal idempotent P := Zje[n]\S Ej; and note that a matrix X € M,
is supported in S x S if and only if XP = PX = 0. In that case, obviously X o P =0, so
0= 6(X 0 P) = 9(X) 0 g(p) " 20 D
and hence Lemma @ (a) implies the claim.
Let j € [n] and A € F*. Then

?(AEjj) = ¢((AEjj) o Ejj) = ¢(AEj;) o Ej;.
In view of Lemma EI (b) we have
P(AEj;) = Ejd(AEj;)Ejj = ¢(AEj;) 5 Ejj.

P(X)o P
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Since ¢(0) = 0, it follows that there exists a unique map w; : F — F such that
S(NE};) = w;(\6(Ej;), forall A € F.
Fix distinct 4,5 € [n]. For A € F* by () we have
wi(2X)¢(Eij) o Eii = ¢(Eij o (2AEii)) = ¢(AEij) = ¢(Eij o (2AEj;))
= w;(2A)(Ei;) o Ejj.
Note that (@) implies that supp ¢(AE;;) C {i,j} x {i,j}. By ¢(AE;;)*> = 0 and Lemma @
it follows that
(3.4) O(AEij) o< Eyj or Ej;.

Returning to the previous equation, it follows w;(2)\) = w;(2X). We conclude w; = wj; so there
exists a unique globally defined map w : F — F such that

H(AE;j) = w(N)E;;, forall AeF,j e [n].
Now we prove (@) For A € F we have

SN =0 | Y AEj; Femma £ (1) > 6(AE) = wNe(Ej)

Jjeln] Jj€ln] j€ln]

Now, for arbitrary X € M, and A € F we have
P(AX) = ¢(X o (M) = ¢(X) 0 ¢(A]) = Ap(X).
For some i € [n] and A, u € F (again using ()) we have

wA)Eii = ¢((Aw) Eii) = o((AEi) o (nEii)) = ¢(AEi) o ¢(ukLis)
= w(Nw(p) Eii,
which implies w(Au) = w(A)w(p), so w is a multiplicative map.
Assume now that n > 2. The argument that w is additive is similar to the proof of [,

Theorem 3.1, Claim 5]. For completeness, we include the details. Let i,j € [n] be distinct.
For fixed x,y € F consider the idempotents

B+ inj, Ejj + yEij € Idem(Mn).

By (@) we see that
supp ¢(Bi; + xEi;) C {i,j} x {4, j}.
Denote
¢(Eii + xE;j) = Z rsFBrs, aps €TF.
(rs)efig}x{i.g}
From now on, in view of (@) assume that ¢(E;;) = BE;; for some 8 € F* as the other case
(i.e. 9(Eyij) = BEj;) is similar. We have

N (;x> PEg  =¢ <;xE”> = ¢((Eii + zEij) o Ejj) & ¢(Eii + 2 Eij) o Ejj
1

1
= iaijEij + §OéjiEji + ajiEj;.
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Since ¢(E;; + xE;j) is an idempotent and w=1({0}) = {0}, we conclude
1
Q5 = 2w <2$> 5, Qi = Qj5 = O, Qi — 1.
Hence
1
¢(Eii + xEij) = Eii + 2w <2JJ) BE;.
In an analogous way we arrive at the equality
1
¢(Ejj +yEij) = Ejj + 2w <2y> BE;.

We have

2 2
= ¢(Eii + xEyj) o ¢(Ej; + yEij)

_ (E 2 (;x> 5Eij> o (Ejj 2 (;;;) ﬂEij>
)
(30 5)

Since x,y € F were arbitrary, this concludes the proof. O

. (:c+y) 8E, :¢<w+yEi,> = ¢((Eyi + 2Eij) o (Ejj +yEi;))

and hence

The proof of the next lemma follows exactly the same lines as the proof of [, Theorem 3.1,
Claim 8], so we omit it.

Lemma 3.4. Let ¢ : M, — M,,n > 2, be a o-multiplicative map such that $(0) = 0. Then
S(PXP) = ¢(P)p(X)$(P), for all X € My, P € Idem(M,,).

Proof of Theorem . First, as noted in the introduction (and following [7, Remark 3.7]), it
suffices to prove Theorem El for o-preserving maps, since the transformation ([1.4) allows us
to extend the result to o-preserving maps. Therefore, assume that ¢ : M, — M,, n > 2, is
o-multiplicative.

Suppose that ¢ is not the zero map. Since ¢(0) is an idempotent, without loss of generality
we can assume that

»(0) = [{; 8} , for some 0 < r <n.

Assume that » > 1. Then we claim that ¢ is the constant map equal to ¢(0). Indeed, first
note that for all X € M,, we have

$(0) = ¢(X 0 0) = ¢(X) 0 ¢(0)
which easily implies that
I, 0
(35) o0 =0 4]

for some uniquely determined matrix ¥(X) € M,,_,. In particular, if » = n, it follows that
¢ is the constant map globally equal to I. Otherwise, it makes sense to consider the map
Y : M, — M,_, defined by (@), which is again o-multiplicative, and satisfies 1(0) = 0. Since
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n —r < n, Lemma @ (d) implies that ¢ must be the zero map, and therefore ¢(X) = ¢(0)
for all X € M,,.

Suppose now that r = 0, i.e. that ¢(0) = 0. We claim that ¢ takes the form given in (@),
and as a result, it is a nonzero additive map. As in Lemma ﬁ and its proof, without loss of
generality we can assume that

¢(E;;) = Ejj, for all j € [n]
and consequently, by Lemma (2),
(3.6) ¢(P)=P, forall Peldem(M,)ND,.

As in (@) for A = 1, under these assumptions we also obtain
¢(Ez]) 0.8 Eij or Eﬂ

We claim that the same option holds throughout. We follow a similar approach as outlined
in the proof of [, Theorem 3.1, Claim 4]|. For completeness we include details. Consider the
set

S:={(r,s) € [n]*\ A, : ¢(Es) x Epg}.

For the sake of concreteness, assume that (i,j) € S. In that case clearly ¢(Ej;) o Ej;, as
otherwise

1
¢ <2 (B + Ejj)) = ¢(Eij o Eji) = ¢(Eyj) 0 ¢(Eji) < Ejjo Eyj =0
is a contradiction with Lemma @, so (j,7) € S. The next objective is to show that (i,k) € S
for any k € [n] \ {i}, and (I,5) € S for any [ € [n] \ {j}.
— Assume that k € [n] \ {4,7} and that ¢(FE;;) x Ex;. Then

1
0 = ¢(Esj o Eig) = ¢(Eij) o ¢(Ey) x Ejj o By = §Ekj

is a contradiction, so it must be ¢(E;) o Ej.
— Assume that | € [n] \ {7,j} and that ¢(E;;) o< Ej. Then

1
0= &(Eij o Eyj) = ¢(Eij) 0 p(Eiy) o< Bij o Ejy = S B

is a contradiction, so that ¢(E;;) o< Ej;.
By Lemma @ it follows that S = [n]? \ A,, so there exists a map ¢ : [n]> — F* such that
&(Eij) = g(i,5)Eij, foralli,j € [n].
We claim that the map ¢ is transitive in the sense of [3], i.e. it satisfies
9(i, )9 (i, k) = g(i, k), for all (i, 5), (5. k) € [n]*.

Fix (i,7), (4, k) € [n]?. If i # k, then

1 Lemma B3 1

29k By TT=""0 <2Ezk> = ¢(Eij o Ejk) = ¢(Eij) o ¢(Ejk)

1
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which implies g(i, k) = g(4,7)g(j, k). On the other hand, if i = k, then

1 emima ].
3 (Eii + E; -)L 57(@) o (2 (Ei + Ejj)) = ¢(Eij o Eji) = ¢(Eij) o ¢(Eji)

| N
= Loti.3)a (B + By
which implies ¢(i,7) =1 = g(i,5)g(j, 7). Following [3], denote by

g* : My, — My, g*(Eij) = g(i7j)Eij

the induced (algebra) automorphism of M,,. Since every automorphism of M,, is inner (see
e.g. [2, Theorem 1.30]), by passing to the map X + (g*) 1 (¢(X)), without loss of generality
we can assume that

¢(Eij) = Eij,  for all (i,7) € [n]*
In view of Lemma @, denote by w : F — F the induced ring monomorphism that satisfies
(@) We claim that

H(X) =w(X), forall X € M,.
Fix (i,5) € [n]?. If i = j, we have

L &2
w(Xii)Eii = ¢(XiiEii) = ¢(EuX Ey) "= Eud(X)Eii = ¢(X)ii B,

so ¢(X)ii = w(Xii). Now assume i # j. Since w is multiplicative and acts as the identity on
the prime subfield K C F, we obtain

1 1 1
S(Xij)Eji = ¢ <2XijEji> =¢ <2EjiXEji> = ¢((Eji 0 X) o Eji)

= (¢(Eji) 0 (X)) 0 d(Eji) = (Eji o $(X)) o Eji
1

= 59(X)i; Eji-

This implies ¢(X);; = w(Xj), which completes the proof of the theorem. O

It is also worth noting that the first part of the proof of Theorem EI immediately yields
the following corollary:

Corollary 3.5. Let m < n. The map ¢ : M,, — M, is Jordan multiplicative if and only if it
s constant and equal to a fized idempotent.

In contrast to the matrix algebra M,,, the next two examples illustrate that the non-constant
Jordan multiplicative maps defined on general central SMAs (i.e. those with a trivial centre),
or on the C*-algebra B(H) of bounded linear operators on an infinite-dimensional Hilbert
space H, are no longer automatically additive.

Example 3.6. Let 7,, C M, be the upper-triangular subalgebra of M,,. Choose an arbitrary
non-additive multiplicative map w : F — F (e.g. w(z) := 2?) and define a map

T11 T12 - Tin w(z11) 0 XX 0
0 x22 -+ @2y 0 w(ryg) - 0
¢ Tn = Tn, : o N
0 0 - zpn 0 0 o w(Tpn)

Then ¢ is clearly o-multiplicative, but is neither constant nor additive.
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Example 3.7. Let H be an infinite-dimensional Hilbert space. In view of the identification
H >~ H ® H, for any fixed nonzero idempotent P € B(H), the map

o7

¢:B(H) = BH®®H), X [0 P

is o-multiplicative, but is neither constant nor additive.

Finally, the next simple example demonstrates that Theorem @ does not extend to ©-
multiplicative maps over fields F of characteristic two.

Example 3.8. Assume that char(F) = 2 and n > 2. Fix an arbitrary trace-one matrix
A € M, (F) and define a map ¢ : M, (F) — M, (FF) that sends A to a fixed nonzero matrix and
all other matrices to zero. As the trace of any matrix in M, (FF) of the form X oY = XY 4+Y X
is zero, it follows that ¢ is o-multiplicative, but is neither constant nor additive.
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