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Abstract. In this note we prove that for any two restricted roots α, β of
a real semisimple Lie algebra g, such that α + β 6= 0, the corresponding root
subspaces satisfy [gα, gβ] = gα+β.

Let g be a real semisimple Lie algebra, a a Cartan subspace of g and R
the (restricted) root system of the pair (g, a) in the dual space a∗ of a. For
α ∈ R denote by gα the corresponding root subspace of g :

gα = {x ∈ g; [h, x] = α(h)x ∀h ∈ a}.

The aim of this note is to prove the following theorem:

THEOREM. Let α, β ∈ R be such that α + β 6= 0. Then either
[x, gα] = gα+β ∀x ∈ gβ \ {0} or [x, gβ] = gα+β ∀x ∈ gα \ {0}.

Although the proof is very simple and elementary, the assertion does not
seem to appear anywhere in the literature. The argument for the proof is
from [2], where it is used to prove [gα, gα] = g2α (a fact which is also proved
in [3], 8.10.12), and also to prove that the nilpotent constituent in an Iwa-
sawa decomposition is generated by the root subspaces corresponding to the
simple roots.

Let B be the Killing form of g :

B(x, y) = tr (ad x ad y), x, y ∈ g.
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Choose a Cartan involution ϑ of g in accordance with a, i.e. such that
ϑ(h) = −h ∀h ∈ a. Denote by (·|·) the inner product on g defined by

(x|y) = −B(x, ϑ(y)), x, y ∈ g.

We shall use the same notation (·|·) for the induced inner product on the
dual space a∗ od a. Let ‖ · ‖ denote the corresponding norms on g and on a∗.
For α ∈ R let hα be the unique element of a such that

B(h, hα) = α(h) ∀h ∈ a.

LEMMA. Let α, β ∈ R be such that (α|α + β) > 0. Then

[x, gβ] = gα+β ∀x ∈ gα \ {0}.

Proof. Take x ∈ gα, x 6= 0. We can suppose that ‖x‖2‖α‖2 = 2. Put

h =
2

‖α‖2
hα and y = −ϑ(x).

Then
[h, x] = 2x, [h, y] = −2y, [x, y] = h

([3], 8.10.12). Therefore, the subspace s of g spanned by {x, y, h} is a simple
Lie algebra isomorphic to sl(2, R). From the representation theory of sl(2, R)
([1],1.8) we know that if π is any representation of s on a real finite di-
mensional vector space V, then π(h) is diagonalizable, all eigenvalues of the
operator π(h) are integers, and if for n ∈ Z Vn denotes the n−eigenspace of
π(h), then

n ≥ −1 =⇒ π(x)Vn = Vn+2.

Put
V =

∑

j∈Z
gβ+jα.

Then V is an s−module for the adjoint action and

gβ+jα = Vn+2j where n = 2
(β|α)

‖α|2 ∈ Z.

Especially,
Vn = gβ, Vn+2 = gα+β.
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Now

n + 2 = 2
(α|α + β)

‖α‖2
> 0 =⇒ n ≥ −1 =⇒ (adx)Vn = Vn+2.

Proof of the Theorem. It is enough to notice that if α + β 6= 0 then

0 < (α + β|α + β) = (α|α + β) + (β|α + β),

hence, either (α|α + β) > 0 or (β|α + β) > 0.

Let mα denote the multiplicity of α ∈ R (mα = dim gα). An immediate
consequence of the Theorem is:

COROLLARY. If α, β ∈ R, α + β 6= 0, then mα+β ≤ max (mα, mβ).
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