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Non−separated points in the dual spaces
of semi−simple Lie groups

Let G be a connected semi−simple Lie group with finite center, g its Lie algebra, gc = g⊗R C,
G the universal enveloping algebra of gc and K a maximal compact subgroup of G.

Let π be a continuous representation of G on a Banach space H. For δ ∈ K̂ let Hδ denote the
δ−isotypic K−submodule of H; Hδ is the range of the continuous projection

P π
δ = dim(δ)

∫

K

ξδ(k)π(k) dk

where ξδ is the character of δ and dk is the normalized Haar measure on K. We call π admissible
if the subspace Hδ is finitedimensional for every δ ∈ K̂. In this case set

(π : δ) =
dim Hδ

dim δ
and HK =

∑

δ∈K̂

uHδ

(algebraic direct sum). Then HK is a G−module anbd we denote the corresponding representation
of G again by π. For any finite set S ⊆ K̂ we set

HS =
∑

δ∈S

uHδ.

Let π and π′ be admissible representations of G on H and H′, respectively. They are called
infinitesimally equivalent if the corresponding G−modules HK and H′

K are isomorphic. If π
and π′ are unitary and irreducible, this is equivalent to the unitary equivalence.

Let g = kup be the Cartan decomposition of g coirresponding to K. Choose a maximal Abelian
subspace a in p and set M = ZK(a) and m = Zk(a) (Z denotes centralizers). Let d be a Cartan
subalgebra of m. Set

R = R(gc, hc) ⊆ h∗
0, h = d u a, h0 = id u a,

R0 = R(mc, dc) ⊆ d∗, Σ = R(g, a) ⊆ a∗.

Let W be the Weyl group of R acting on hc and h∗
c. Choose compatible orders on h∗

0, id∗ and a∗

and let R+, R+
0 and Σ+ denote the corresponding positive roots. Set

n =
∑

α∈Σ+

ugα, N = exp n, A = exp a;

mα = dim gα, α ∈ Σ;

ρc =
1

2

∑

α∈R+

α, ρ0 =
1

2

∑

α∈R+
0

α, ρ =
1

2

∑

α∈Σ+

mαα.
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Let H : G → a, ν : G → N, κ : G → K be the analytic maps corresponding to the Iwasawa
decomposition G = ANK :

x = exp(H(x))ν(x)κ(x), x ∈ G.

Let σ ∈ M̂ be realized on a finitedimensional Hilbert space V σ and set

Hσ = {f ∈ L2(K, V σ); f(mk) = σ(m)f(k), m ∈ M, k ∈ K}

(a closed subspace of the Hilbert space L2(K, V σ)). For any λ ∈ a∗
c define the so called elementary

representation πσ,λ of G on Hσ by

[πσ,λ(x)f ](k) = e(λ+ρ)(H(kx))f(κ(kx)), k ∈ K, x ∈ G, f ∈ Hσ.

Then πσ,λ is an admissible representation of G. The restriction πσ,λ|K is independent of λ and it
is the representation of K induced by σ. Furthermore, by Frobenius reciprocity

(πσ,λ : δ) = (δ : σ), δ ∈ K̂, σ ∈ M̂, λ ∈ a∗
c.

Let Z be the center of G and let ν 7→ χν be the mapping from h∗
c to Hom(Z, C) which induces

the Harish−Chandra’s bijection from the set h∗
c/W of W−orbits in h∗

c onto Hom(Z, C). The
representation πσ,λ admits infinitesimal character and it is equal to χν(σ,λ), where

ν(σ, λ)|dc = Λσ + ρ0, ν(σ, λ)|ac = λ;

Λσ is the highest weight (with respect to R+
0 ) of the representation of mc derived from σ.

We shall need the following result by W. Casselman:

Theorem 1. Every irreducible admissible representation π of G admits an infinitesimal embedding
into some πσ,λ (i.e. π is infinitesimally equivalent to a subrepresentation of some πσ,λ).

As far as I know the proof of this theorem has not been published yet, but my colleague D.
Miličić has written down the complete proof, and it turns out to be considerably simpler then the
proof of Harish−Chandra’s subqotient theorem. It is based on the following:

1. (Osborne’s theorem) HK is finitely generated as U(nc)−module, where U(nc) is the universal
enveloping algebra of nc.

2. The study of asymptotic behaviour of K−finite matrix coefficients of π shows that the
subspace

HK(n) = span {π(X)v; v ∈ HK, X ∈ n}
is different from HK. Let V be the quotient space HK/HK(n). By 1. V if finite−dimensional
and it is naturally a MAN−module on which N acts trivially.

3. (Casselman’s reciprocity theorem) Let σ ∈ M̂ and λ ∈ a∗
c and let V σ be endowed with

MAN−module structure by

man 7→ e(λ+ρ)(log a)σ(m), m ∈ M, a ∈ A, n ∈ N.

For T ∈ HomG(HK ,Hσ,λ
K ) let T̃ : V → V σ be defined by

T̃ (v + HK(n)) = (Tv)(e), v ∈ HK .

Then T 7→ T̃ is an isomorphism from HomG(HK,Hσ,λ
K ) onto HomMAN(V, V σ).
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4. By 2. we can find σ and λ such that HomMAN(V, V σ) 6= {0}. By 3. it follows that
HomG(HK,Hσ,λ

K ) 6= {0}. π being irreducible, there exists an infinitesimal embeding of π
into πσ,λ.

Let D(G) be the space of compactly supported C∞−functions on G and let D′(G) denote the
space of distributions on G endowed with the weak topology. Let π be an irreducible admissible
representation of G on a Banach space H. By theorem 1. up to infinitesimal equivalence we can
suppose that H is a Hilbert space. By Harish−Chandra’s results for any f ∈ D(G) π(f) is a
trace−class operator and if we set

Θπ(f) = Tr π(f), f ∈ D(G),

then Θπ ∈ D′(G). Furthermore, if π and π′ are infinitesimally equivalent, then Θπ = Θπ′, and
if π1, π2, . . . , πn are pairwise infinitesimally inequivalent, then Θπ1, Θπ2, . . . , Θπn are linearly inde-
pendent.

For an admissible representation π on a Banach space H and for δ ∈ K̂ let Φπ
δ be the corre-

sponding trace spherical function

Φπ
δ (x) = Tr (P π

δ π(x)P π
δ ) , x ∈ G.

For f ∈ D(G) set

Φπ
δ (f) = Tr (P π

δ π(f)P π
δ ) =

∫

G

f(x)Φπ
δ (x)dx.

Of course, dx denotes a fixed Haar measure on G.

If π is of finite length, Θπ is also well−defined and it equals the sum of characters of the
successive subquotients in any Jordan−Hölder series of π. Obvously we have

Θπ(f) =
∑

δ∈K̂

Φπ
δ (f), f ∈ D(G).

We shall need the following result from PhD thesis of D. Miličić:

Theorem 2. (i) Let ξ : Ĝ → D′(G) be the canonical injection, i.e. ξ(π) = Θπ. The closure

ξ(Ĝ) of ξ(Ĝ) in D′(G) consists of distributions of the form

∑

ω∈Ω

m(ω)Θω, m(ω) ∈ N, Ω ⊆ Ĝ finite.

(ii) If Θ =
∑

ω∈Ω m(ω)Θω is in the closure ξ(Ĝ) of ξ(Ĝ) set T (Θ) = Ω. For any subset S of Ĝ

its closure in Ĝ is

S =
⋃{

T (Θ); Θ ∈ ξ(S)
}

.

(iii) If (πn)n∈N is a sequence in Ĝ and if Ω 6= ∅ denotes the set of all its limits, there exists a
subsequence (πnk

)k∈N such that the sequence
(
Θπnk

)
k∈N converges in D′(G). For any such

subsequence

Ω = T
(

lim
k→∞

Θπnk

)
.
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(iv) Let (πn)n∈N be a sequence in Ĝ, let Ω be a finite subset of Ĝ and m(ω) ∈ N for any ω ∈ Ω.
Suppose that

lim
n→∞

Θpin =
∑

o∈Ω

m(ω)Θω.

Then
lim

n→∞
Φπn

δ (f) =
∑

o∈Ω

m(ω)Φω
δ (f), ∀δ ∈ K̂, ∀f ∈ D(G).

This theorem is deduced from Theorem 7. in [1] by showing that C∗(G) is a C∗−algebra with
bounded trace and that D(G) is an admissible subalgebra of C∗(G). The proof of these facts is an
adaptation of Harish−Chandra’s proof that Θπ are distributions.

Let α denote the representation k 7→ (Ad k)|pc of K on pc. For δ ∈ K̂ set

S(δ) = {γ ∈ K̂; (α ⊗ δ : γ) > 0}.

Lemma 1. Let π be an admissible representation of G on H, δ ∈ K̂ and X ∈ gc. Then π(X)Hδ ⊆
HS(δ).

Proof: This follows from gc = kc u pc and from the fact that

∑

i

Xi ⊗ vi 7→
∑

i

π(Xi)vi, Xi ∈ pc, vi ∈ Hδ,

is a K−morphism from pc ⊗Hδ into HK .

Lemma 2. Let σ ∈ M̂, δ ∈ K̂ and X ∈ gc. Then (λ, f) 7→ πσ,λ(X)f is a continuous mapping
from a∗

c ×Hσ
δ into Hσ

S(δ).

Proof: For k ∈ K, f ∈ Hσ
K and X ∈ gc we have

[
πσ,λ(X)f

]
(k) =

d

dt
e(λ+ρ)(H(k exp tX))f(k(k exp tX))

∣∣∣∣
t=0

=

= (λ + ρ)(H(k, X))f(k) + (X(f ◦ k))(k),

where

H(k, X) =
d

dt
H(k exp tX))

∣∣∣∣
t=0

, k ∈ K, X ∈ gc.

Now, Hσ
K consists of C∞ (even analytic) functions K → V σ. Furthermore, the space Hσ

S is
finite−dimensional for any finite S ⊆ K̂, hence the usual topology on this finite−dimensional
space is the one induced from C∞ (K, V σ) . The assertion follows from this and from Lemma 1.

Lemma 3. For ϕ ∈ D(G), σ ∈ M̂ and δ ∈ K̂ the mapping (λ, f, g) 7→
(
πσ,λ(ϕ)f |g

)
from

a∗
c ×Hσ

δ ×Hσ
δ into C is continuous.

Proof: We have

(
πσ,λ(ϕ)f |g

)
=

∫

G

∫

K

ϕ(x)e(λ+ρ)(H(kx))(f(k(kx))|g(k))V σdk dx.

The assertion follows by easy estimation.

We are now able to prove a result on non−separated points in Ĝ.
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Theorem 3. Let Ω be a finite subset of Ĝ such that there exists a sequence (πn)n∈N in Ĝ having
Ω as the set of all limits. Then there exist σ ∈ M̂ and λ0 ∈ a∗

c and a subrepresentation π0 of πσ,λ

such that Ω is the set of all infinitesimal equivalence classes of irreducible subquotients of π0.

Proof: Let (πn)n∈N be a sequence in Ĝ such that Ω is the set of all its limits. By (iii) of
Theorem 2. we can suppose that

lim
n→∞

Θπn =
∑

o∈Ω

m(ω)Θω, m(ω) ∈ N,

and by (iv) of the same theorem we have then

lim
n→∞

Φπn

δ (ϕ) =
∑

o∈Ω

m(ω)Φω
δ (ϕ), ∀δ ∈ K̂, ∀ϕ ∈ D(G). (1)

By Theorem 1. for every n ∈ N there exist σn ∈ M̂ and λn ∈ a∗
c such that πn is infinitesimally

equivalent to a subrepresentation of πσn,λn. Hence, we can and shall identify HK(πn) with a
G−submodule (with respect to πσn,λ:n) of Hσn

K . Thus, χν(σn,λn) is the uinfinitesimal character of
the representation πn. Let χ0 be the infinitesimal character of the members of Ω. Due to a theorem
by P. Bernat and J. Dixmier

χ0(z) = lim
n→∞

χν(σn,λn)(z) ∀z ∈ Z.

Now, ν 7→ χν induces a homeomorphism of h∗
c/W (with the quotient topology) onto Hom(Z, C)

(with the pointwise convergence topology). Therefore, the sequence (Wν(σn, λn))n∈N in h∗
c/W

converges to the W−orbit in h∗
c associated to χ0. W being finite, we can suppose (by passing to

a subsequence of (πn) if necessary) that the sequence (ν(σn, λn))n∈N converges in h∗
c. Set

ν0 = lim
n→∞

ν(σn, λn).

Then ν(σn, λn)|dc = Λσn + ρ0 converges to ν0|dc in d∗
c. But the set {Λσ; σ ∈ M̂} is discrete in

d∗
c, hence we can assume (by passing to a subsequence again) that Λσn + ρ0 = νo|dc for every

n ∈ N. The group M has finitely many connected components, hence for a given σ ∈ M̂ the set
N(σ) = {τ ∈ M̂ ; Λτ = Λσ} is finite and

sup {#N(σ); σ ∈ M̂} < +∞.

Therefore, by taking a subsequence again we can suppose that σn = σm for all n, m ∈ N. Set
σ = σn, n ∈ N. Furthermore, set πλ = πσ,λ, λ ∈ a∗

c, and H = Hσ. Now, Hπn
K ⊆ HK for every

n ∈ N and Hπn
δ = Hπn

K ∩ Hδ, δ ∈ K̂. Let

λ0 = lim
n→∞

λn = ν0|ac.

Fix δ ∈ K̂. The space Grass(Hδ) of all subspaces of Hδ with the usual topology is compact.
Hence, a subsequence of (Hπn

δ )n∈N convereges in Grass(Hδ). K̂ being countabel, using a diagonal
procedure we can pass to a subsequence of (πn)n∈N (denoted again by (πn)n∈N) such that the
sequence (Hπn

δ )n∈N converges in Grass(Hδ). Denote by H0
δ its limit and set

V =
∑

δ∈K̂

uH0
δ .
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Let δ ∈ K̂ and f0 ∈ H0
δ be arbitrary. Choose fn ∈ Hπn

δ , n ∈ N, so that f0 = limn→∞ fn. For any
X ∈ gc we have by Lemma 1.

πλ0(X)f0 = lim
n→∞

πλn(X)fn ∈ lim
n→∞

Hπn

S(δ) =
∑

γ∈S(δ)

uH0
γ ⊆ V.

It follows that V is a G−submodule of HK eith respect to πλ0, hence its closure H0 in H is a
G−submodule for πλ0 . Let π0 be the corresponding subrepresentation of πλ0 .

Let Ω1 be the set of all infinitesimal equivalence classes of irreducible subquotients of π0 and
for ω ∈ Ω1 let n(ω) denote the multiplicity of ω in a Jordan−Hölder series of π0.

Fix δ ∈ K̂. Let n0 ∈ N be such that

dim Hπn

δ = dim H0
δ = m ∀n ≥ n0.

For any n ≥ n0 choose an orthonormal basis (fn
1 , fn

2 , . . . , fn
m) of Hπn

δ in such a way that this
sequence of orthornormal bases converges to an orthonormal basis (f1, f2, . . . , fn) of H0

δ :

fj = lim
n→∞

fn
j , j = 1, 2, . . . , m.

By Lemma 3. for any ϕ ∈ D(G) we have

lim
n→∞

Φπn
δ (ϕ) = lim

n→∞

m∑

j=1

(πn(ϕ)ϕn
j |fn

j ) = lim
n→∞

m∑

j=1

(πλn(ϕ)fn
j |ϕn

j ) =

=

m∑

j=1

(πλ0(ϕ)fj|fj) = Φπ0
δ (ϕ) =

∑

ω∈Ω1

n(ω)Φω
δ (ϕ).

Therefore, for arbitrary δ ∈ K̂ and ϕ ∈ D(G) it follows from (1)
∑

ω∈Ω

m(ω)Φω
δ (ϕ) =

∑

ω∈Ω1

n(ω)Φω
δ (ϕ).

Summing over all δ ∈ K̂ we get
∑

ω∈Ω

m(ω)Θω =
∑

o∈Ω1

n(ω)Θω.

Thus, Ω1 = Ω.

REFERENCES:
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Comment: In my first letter I have mentioned that π, π′ ∈ Ĝ are non−separated if and
only if they are infinitesimally equivalent to subquotients of the same elementary representation.
The only if part follows from Theorem 3. But unfortunately the if part is not true. The simplest
counter−example is found in the case G = Sl(2, R). Namely, in this case dte discrete series
representations occur in elementary representations in pairs which are separated in Ĝ. Similar
thing happens in the cases G = SU(n, 1) and G = SO(2n, 1), n ≥ 2. But in all these cases if
and only if holds true in Ĝ for representations with trivial infinitesimal character, even in Ĝ \ Ĝd,
where Ĝd denotes the set of infinitesimal equivalence classes of discrete series representations.

If we consider the non−unitary dual space of G introduced by Fell instead of Ĝ, the if part is
easily proven, because for any σ ∈ M̂ the set {λ ∈ a∗

c ; πσ,λ is irreducible} is dense in a∗
c . Probably

the only if part holds true also in the non−unitary dual space, but to prove this it is necessary to
generalize the Miličić’s theorem to include the case of non−unitary representations.


