
R–groups for metaplectic groups∗

Marcela Hanzer†1

1Department of Mathematics, University of Zagreb, Croatia

Abstract

In this short note, we completely describe a parabolically induced representation

Ind
˜Sp(2n,F )

P (σ), in particular, its length and multiplicities. Here, ˜Sp(2n, F ) is a p–adic
metaplectic group, and σ is a discrete series representation of a Levi subgroup of P. A
multiplicity one result follows.

1 Introduction

A knowledge of R–groups (in all their variants–classical, Arthur, etc.) is very important in
understanding the representation theory of reductive p–adic groups, especially their unitary
duals. Let G be a reductive p–adic group with a parabolic subgroup P = MN where M is
a Levi subgroup. Assume σ is a discrete series (complex) representation of M. Then, it is
important to understand how the representation IndGP (σ) reduces: whether it is reducible,
and if it is reducible, whether all the irreducible subquotients appear with multiplicity one.
These questions are answered by knowing the structure of the commuting algebra C(σ);
i.e., the intertwining algebra of IndGP (σ). It is already known from the work of Casselman
that the dimension of C(σ) is bounded by the cardinality of W (σ), the subgroup of the
Weyl group of G fixing the representation σ. The precise structure of C(σ) is given by a
certain subgroup of W (σ), called the R–group of σ. This approach to understanding the
structure of IndGP (σ) goes back to the work of Knapp and Stein on real groups and principal
series representations. In various situations in the p-adic case, the R–groups were computed
by Keys ([16],[17]), Winarsky ([30]), Herb ([13]), and, especially important for us, for the
classical split groups, by Goldberg ([9], Theorems 4.9, 4.18 and 6.5). This calculation is
generalized to hermitian quaternionic groups by this author ([10]).

The metaplectic groups over global fields are extremely important in number theory.
Over local fields, besides their obvious importance to the global picture, they give us further
information on the representations of classical groups through theta correspondence. The
p–adic metaplectic groups, in which we are interested, are not linear algebraic groups.
However, over a p–adic field F, they are l–groups, just as the groups of points in F of
the classical p–adic groups. The p–adic metaplectic groups share a number of common
properties with the (F–points of) reductive group: we can define tori, parabolic subgroups,
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etc., so that parabolic induction, Jacquet modules and so on, are defined. We can define
square-integrable and tempered representations, and the algebraic criteria of Casselman for
representations to be square-integrable or tempered ([5], Theorem 4.4.6 and [27], Section 6)
are quite similar between metaplectic and classical groups (cf. [3], Theorem 3.4). We also
have the Langlands classification of irreducible representations which is analogous to the
one for the reductive algebraic groups (cf. [3], Theorem 1.1).

Now, we could develop the theory of R–groups for metaplectic groups from scratch;
i.e., by directly studying the structure of commuting algebra of IndGP (σ) through it relation
with the Weyl group, or we can use theta correspondence with the representations of the
odd orthogonal groups, for which we know the R–groups (i.e. the structure of IndGP (σ)) by
the work of Goldberg ([9]). We use the second approach to completely describe the R–
groups for metaplectic groups. This is enabled by recent results of Gan and Savin on theta
correspondence ([6]), which are very precise in handling tempered representations. We use
their results, coupled with a more thorough analysis of the isotypic components in Kudla’s
filtration ([18], Theorem 2.8). This analysis is similar to that of Muić ([23], Section 3), and
given in notation of [2], Section 5. To do that, we also use knowledge about L–packets, now
available for metaplectic groups, to extract some information about Jacquet modules of the
representations in question.

Our result completely describes the reducibility of IndGP (σ), where G is a metaplectic
group and P any parabolic subgroup, in terms of the representations induced from the
maximal parabolic subgroups. The representation IndGP (σ) is multiplicity free (for all the
unexplained notation we refer to Preliminaries section):

Theorem. Let δ1, . . . , δk be (unitarizable) discrete series representations of GL(mi, F ), i =

1, 2, . . . , k. Let σ be an irreducible discrete series representation of ˜Sp(2n, F ). Then,

χψδ1 × χψδ2 × · · · × χψδk o σ

is a direct sum of 2m mutually inequivalent, irreducible, tempered representations. Here, m
is the number of mutually inequivalent δi’s such that χψδi o σ reduces.

In other words, the R–group for the representation above is isomorphic to (Z/2Z)m.
In this way, we have completed some basic results about representation theory of p–adic

metaplectic groups, which we started in ([12]). All the results from [12] and this result about
R–groups, confirm the similarities between the classical groups and the metaplectic ones,
but the similarities go only so far: e.g., the standard module conjecture and the generalized
injectivity conjecture which hold for classical groups ([22],[11]) do not hold for metaplectic
groups (cf. Remark after Corollary 9.3. of [6]).

In the Preliminaries section we collect notation and results we need for our computation
in the third section: we introduce the orthogonal and symplectic groups over a p–adic
field F , and then introduce the metaplectic groups. In the third section we briefly recall
theta correspondence and isotypic components. We recall Kudla’s filtration of a Jacquet
module of the Weil representation, and we give a basic technical result about some isotypic
components in this filtration (Lemma 3.3). Then, the basic result is Proposition 3.4, which
completely describes the R–group i.e., the reducibility of IndGP (σ) for G metaplectic and P
maximal (and a little more than that). After that, the general result easily follows and is
given in Theorem 3.5.

This work is partially supported by Croatian Science Foundation grant no. 9364.
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2 Preliminaries

Let F be a non–archimedean field of characteristic zero. All the representations of all the
groups in this paper are assumed to be smooth, i.e. each vector in the representation space
is fixed by some open compact subgroup. We now introduce the Zelevinsky notation for
parabolic induction for general linear and classical p–adic groups (cf. [31]). Let π1, . . . , πk
be representations of GL(ni, F ), i = 1, . . . , k. We fix a Borel subgroup consisting of upper
triangular matrices in a matrix realization of GL(n, F ). The group GL(n1 + n2 + · · · +
nk, F ) has a standard parabolic subgroup, say P, whose Levi subgroup M is isomorphic to

GL(n1, F )×GL(n2, F )× · · · ×GL(nk, F ). Then we denote Ind
GL(n1+n2+···+nk,F )
P (π1 ⊗ π2 ⊗

· · · ⊗ πk) (the normalized induction) by π1 × π2 × · · · × πk. Analogously, if G is a classical
group we fix a Borel subgroup consisting of upper triangular matrices inside the usual
matrix realization of G (e.g. [27], Section 3). If a Levi subgroup M (of a standard parabolic
subgroup P ) of G is isomorphic to GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×G′, where G′

is a classical group of the same type and smaller rank, and if π1, . . . , πk are representations
of GLni , i = 1, . . . , k and σ a representation of G′, we denote IndGP (π1 ⊗ π2 ⊗ · · · ⊗ πk ⊗ σ)
by π1 × π2 × · · · × πk o σ. We denote by ν a character of GL(n, F ) obtained by composing
the determinant character of GL(n, F ) with the absolute value on F ∗.

Let ρ be an irreducible unitary cuspidal representation of GL(m,F ) and k ∈ N. Then,

the induced representation ρν
k−1
2 × ρν

k−1
2
−1 × · · · × ρν−

k−1
2 has a unique irreducible sub-

representation which we denote by δ(ρν−
k−1
2 , ρν

k−1
2 ). This representation of GL(mk,F ) is

square-integrable (mod center) and any square integrable representation of a general linear
group is obtained in this way (cf. [31], Theorem 9.3).

2.1 Symplectic and orthogonal groups

For n ∈ Z≥0, let W2n be a symplectic vector space over F of dimension 2n. We fix a complete
polarization as follows

W2n = W ′n ⊕W ′′n , W ′n = spanF {e1, . . . en}, W ′′n = spanF {e′1, . . . e′n},

where ei, e
′
i, i = 1, . . . , n are basis vectors of W2n and the skew–symmetric form on W2n is

described by the relations

〈ei, ej〉 = 0, i, j = 1, 2, . . . , n, 〈ei, e′j〉 = δij .

The group Sp(W2n) fixes this form. Let Pj denote the maximal parabolic subgroup of

Sp(W2n) stabilizing the isotropic space W ′jn = spanF {e1, . . . ej}; then there is a Levi de-

composition Pj = MjNj where Mj = GL(W ′jn ). By adding, in each step, a hyperbolic
plane to the previous symplectic vector space, we obtain a tower of symplectic spaces and
corresponding symplectic groups. We also use Sp(2n, F ) to denote Sp(W2n).

Now we describe the orthogonal groups we consider. Let V0 be an anisotropic quadratic
space over F of odd dimension; then dimV0 ∈ {1, 3}. We fix such V0. For the description
of the invariants of this quadratic space, including the quadratic character χV0 describing
the quadratic form on V0, we refer to Chapter V of [19]. In each step, as for the symplectic
situation, we add a hyperbolic plane and obtain a symmetric bilinear space, i.e., (since we
are in the characteristic zero) a quadratic space. We choose a basis for this space analogously
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as for the symplectic spaces above. Consequently, we get a tower of quadratic spaces and a
tower of corresponding orthogonal groups. Each of these groups has the same character χV0
attached to it, so this character is, in fact, attached to the whole tower. In the case in which
r hyperbolic planes are added to the anisotropic space, the corresponding orthogonal group
will be denoted O(Vm), where Vm = V ′r + V0 + V ′′r and V ′r and V ′′r are maximal isotropic
subspaces defined analogously as for the symplectic space. Here m = dimVm = 2r+ dimV0.
Again, Pj will be the maximal parabolic subgroup stabilizing spanF {e1, . . . ej}. We will also
use O(m,F ) to denote O(Vm). We need to consider simultaneously two towers of quadratic
spaces–one with the dimension of the anisotropic bottom space V0 equal to 1, and the
other with this dimension equal to 3– both anisotropic bottom spaces should have the same
quadratic character attached to them. These two towers are referred to as ”a pair of the
orthogonal Witt towers” in Chapter V of [19].

Now we recall Goldberg’s results on R–groups for odd orthogonal groups. These results
([9], Theorems 4.9, 4.18 and 6.5) are done in the setting of special orthogonal group SO(2n+
1, F ), the connected component of O(2n+1, F ). We note that an analogous version holds for
O(2n+1, F ). This follows easily from the following fact: since O(2n+1, F ) ∼= SO(2n+1, F )×
{±I}, for each irreducible representation π of O(2n+ 1, F ), the representation π|SO(2n+1,F )

is irreducible (also cf. [21], Chapter 3, II. 5). Here, {±I} is the center of O(2n+ 1, F ).

Theorem 2.1. Let δ1, . . . , δk be (unitarizable) discrete series representations of GL(mi, F ), i =
1, 2, . . . , k. Let σ be an irreducible discrete series representation of SO(2n + 1, F ) (resp.,
O(2n+ 1, F )). Then,

δ1 × δ2 × · · · × δk o σ

is a direct sum of 2m mutually inequivalent, irreducible, tempered representations of SO(2n+
1, F ) (resp., O(2n + 1, F )). Here m is the number of mutually inequivalent δi’s such that
δi o σ reduces.
In other words, the R–group for the representation above is isomorphic to (Z/2Z)m.

Remark. The results in [9] are formulated for the split orthogonal groups, but it is easily
checked that they hold in the same form in the non-split case.

The following is an immediate corollary of Theorem 2.1.

Corollary 2.2. 1. Let π be an irreducible tempered representation of SO(2n + 1, F ),
(resp., O(2n+ 1, F )) satisfying

π ↪→ δ1 × δ2 × · · · × δk o σ,

where δ1, . . . , δk are the discrete series representations of GL(mi, F ), i = 1, 2, . . . , k
and σ an irreducible discrete series representation of SO(2n + 1, F ) (resp., O(2n +
1, F )). Then, the representation

δi o π,

is irreducible, for each i = 1, 2, . . . , k.

2. Let π be an irreducible tempered representation of SO(2n+1, F ), (resp., O(2n+1, F ))
and δ a discrete series representation of GL(m,F ) such that δ o π reduces. Then, it
is a sum of two non-equivalent, irreducible tempered representations.
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Proof. Let π be as in the first part of the proof. We have

δ1 × δ2 × · · · × δk o σ = π ⊕ π2 ⊕ π3 ⊕ · · · ⊕ π2m ,

for some other irreducible, tempered representations of SO(2n+1, F ), (resp., O(2n+1, F )),
as in Theorem 2.1. Then, for each i = 1, 2 . . . , k

δi × δ1 × δ2 × · · · × δk o σ = δi o π ⊕ δi o π2 ⊕ δi o π3 ⊕ · · · ⊕ δi o π2m .

Again, by Theorem 2.1, the length of δ1 × δ2 × · · · × δk o σ is the same as the length of
δi×δ1×δ2×· · ·×δkoσ. Thus, the right–hand sides of the two displayed equations above are
of the same length, so δioπ is irreducible (as are all other representations on the right-hand
side of the last displayed equation) and the first part of Corollary is proved.

Now we prove the second part. For each irreducible tempered π, there exist irreducible
discrete series representations δ1, . . . , δk of general linear groups, and a discrete series rep-
resentation σ of a smaller (special) orthogonal group, such that

π ↪→ δ1 × δ2 × · · · × δk o σ.

Moreover, let
δ1 × δ2 × · · · × δk o σ = π ⊕ π2 ⊕ π3 ⊕ · · · ⊕ π2m ,

as in the first part of the proof. Then,

δ × δ1 × δ2 × · · · × δk o σ = δ o π ⊕ δ o π2 ⊕ δ o π3 ⊕ · · · ⊕ δ o π2m .

Since δ o π is reducible, δ × δ1 × δ2 × · · · × δk o σ and δ1 × δ2 × · · · × δk o σ do not
have the same length, i.e., by Theorem 2.1, the length of the former is 2m+1. Now, if we
want to employ the whole power of Arthur results ([1]), we can argue that π, π2, . . . , π2m

belong to the same L-packet, so we have the equality of Langlands-Shahidi L-functions
L(s, δ × π) = L(s, δ × πi), i = 2, 3, . . . , 2m. The meromorphic properties of this function
(together with L(s, δ, Sym2)) govern the reducibility of δ o πi, i = 2, 3, . . . , 2m, so, we get
that all the representations δ o πi, i = 2, 3, . . . , 2m, are simultaneously reducible, thus, each
has to be of length two. We can skip this argument which is short, but relies on some
very deep results and proceed as follows. As we saw in Introduction, the structure of
the induced representation we are interested in is governed by the intertwining algebra.
Goldberg actually proved in [9] that the intertwining algebra

Hom(δ1 × δ2 × · · · × δk o σ, δ1 × δ2 × · · · × δk o σ)

is generated by the operators {Ri : i ∈ S}. Here Ri is induced from the operator δi o σ →
δi o σ, where S is the set of all mutually non-isomorphic δi such that δi o σ reduces. But
this means that the intertwining algebra

Hom(δ × δ1 × δ2 × · · · × δk o σ, δ × δ1 × δ2 × · · · × δk o σ)

is generated by the images of {Ri : i ∈ S} under induction and by the image of the (long)
intertwining operator A : δ o σ → δ o σ under induction. For each irreducible constituent
π′ ∈ {π, π2, . . . , π2m} the images of {Ri : i ∈ S} act on δoπ′ as scalars, so Hom(δoπ′, δoπ′)
is generated by the image of A. Since A has just two eigenspaces, this means that the length
of δ o π′ is at most 2. Since the length of δ × δ1 × δ2 × · · · × δk o σ is 2m+1, the length of
δ o π′ is equal to two for each π′ ∈ {π, π2, . . . , π2m}.

5



2.2 The metaplectic group

Let W2n be the symplectic space as above. The metaplectic group ˜Sp(2n, F ) is given as a
central extension

1→ µ2 → ˜Sp(2n, F )→ Sp(2n, F )→ 1 (1)

where µ2 = {1,−1} and the cocyle involved is Rao’s cocycle ([24]). For a more thorough
description of the structure theory of the metaplectic group we refer to [19],[24],[8],[12].

Specifically, for every subgroup G of Sp(2n, F ) we denote by G̃ its preimage in ˜Sp(2n, F ).

In this way, the standard parabolic subgroups of ˜Sp(2n, F ) are defined. Then, we have

P̃j = M̃jN
′
j , where N ′j is the image in ˜Sp(2n, F ) of the unique monomorphism from Nj (the

unipotent radical of Pj) to ˜Sp(2n, F ). We emphasize that M̃j is not a product of GL factors
and a metaplectic group of smaller rank, but there is an epimorphism (this is the case of
maximal parabolic subgroup, cf. [26])

φ : ˜GL(j, F )× ˜Sp(2n− 2j, F )→ M̃j . (2)

Here, we can view ˜GL(j, F ) as a two–fold cover of GL(j, F ) in its own right. In this

way, an irreducible representation π of M̃j can be considered as a representation ρ ⊗ σ of

˜GL(j, F )× ˜Sp(2n, F ), where ρ and σ are irreducible representations, provided they are both
trivial or both non–trivial when restricted to µ2. We are concerned with the case where both
of these representations are genuine, i.e., nontrivial on µ2. Moreover, all the representations

of ˜Sp(2n, F ) we are concerned with will be genuine. The epimorphism (2) justifies the use
of Zelevinsky notation in the metaplectic case.

The pair (Sp(2n, F ), O(Vm)) constitutes a dual pair in Sp(2n, F ·m) ([19],[18]). Since m

is odd, the group Sp(2n, F ) does not split in S̃p(2nm), so the theta correspondence relates

the representations of ˜Sp(2n, F ) and of O(Vm). More on the theta correspondence will be
recalled in Section 3 below.

From now on, we fix an additive, non–trivial character ψ of F related to the theta

correspondence ([18] and [19], Chapter II), and the character χψ on ˜GL(n, F ) given by

χψ(g, ε) = εγ(detg,
1

2
ψ)−1. (3)

Here, for a ∈ F ∗ and a non-trivial additive character η of F, γ(a, η) is defined as the
normalized Weil index of the character of the second degree given by x 7→ ηa(x

2), where
ηa(x) = η(ax) (cf. [19], p. 17). Note that each representation δ ofGL(k, F ) can be considered

to be a non-genuine representation of ˜GL(k, F ), and, when tensored with χψ (cf. (3)),

becomes a genuine representation of ˜GL(k, F ).

3 Isotypic components and the main result

Let ωVm,W2n,ψ be the Weil representation of a reductive dual pair ( ˜Sp(2n, F ), O(m,F ))

with respect to a character ψ. Here ˜Sp(2n, F ) and O(m,F ) are groups described in the
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second section. We actually consider two orthogonal groups O(m,F ) corresponding to a
pair of orthogonal towers as explained in Section 2.1. We are primarily interested in the
representation theory of metaplectic groups, and theta correspondence is a tool we use for
this analysis. So we choose to study the theta correspondence between metaplectic groups
and orthogonal groups in a pair of towers attached to the trivial quadratic character, i.e.,
using notation from Section 2.1., χV0 is trivial. We make this choice because the classifica-
tion of the representations of metaplectic groups in [6], which we use, is given through the
theta correspondence with the pair of orthogonal towers attached to the trivial quadratic
character. To distinguish between the orthogonal groups in the two towers, we denote by
O(m,F )+ the orthogonal group of the quadratic space of dimension m in a tower where the
anisotropic space at the bottom is one-dimensional, and by O(m,F )− the orthogonal group
of the quadratic space of dimension m in a tower where the anisotropic space at the bot-
tom is three-dimensional; SO(m,F )+ and SO(m,F )− denote their connected components,
respectively.

Let P̃k denote a maximal standard parabolic subgroup of ˜Sp(2n, F ) defined above. Then,
by R

P̃k
(ωVm,W2n,ψ) we denote the normalized Jacquet module of ωVm,W2n,ψ with respect to

P̃k; it is an ˜GL(k, F )× ˜Sp(2n− 2k, F )×O(Vm)–module (cf. (2)). We use Kudla’s filtration
(cf. [19], Theorem 8.1.) of R

P̃k
(ωVm,W2n,ψ) in the form given in [2], Lemma 5.1.

We need some notation: Assume that Π is a smooth representation of a product of l–
groups G1×G2. Let ξ be an irreducible smooth representation of G1; by Θ(ξ,Π) we denote
the isotypic component of ξ in Π. More explicitly, with

W :=
⋂

f :Π→ξ
G1intertwining

Kerf

we have Θ(ξ,Π) = Π/W. The representation Θ(ξ,Π) has a natural structure of G2–module
and

HomG1(Π, ξ)∞ ∼= Θ(ξ,Π)∨; (4)

here HomG1(Π, ξ)∞ denotes the smooth part of HomG1(Π, ξ) and ∨ denotes the contragre-
dient.

Now, we return to the theta correspondence. Let π be an irreducible smooth repre-

sentation of ˜Sp(2n, F ). We say that the theta lift on the dimension level m (in one of the
orthogonal towers) is non-zero if Θ(π, ωVm,W2n,ψ) 6= 0. We then call Θ(π, ωVm,W2n,ψ) the full
theta lift of π on Vm and, to simplify the notation, we denote it by Θ(π,m). This is, as
observed above, a representation of O(m,F ). Note that in this notation, the dependence on
ψ is suppressed; also it is assumed that we know to which tower this lift refers (i.e., whether
it is a representation of O(m,F )+ or O(m,F )−).

By the Howe duality conjecture (cf. [14], [15]), proved by Waldspurger when the residual
characteristic is different from 2 ([29]), and in the general case by Gan and Takeda ([7]),
the representation Θ(π,m) has a unique irreducible quotient which we call the small theta
lift and denote by θ(π,m). Moreover, the correspondence

π ↔ θ(π,m)

is a bijection between representations of ˜Sp(2n, F ) and O(Vm) participating in the theta
correspondence (i.e., having non-zero lifts).
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It is known that there is exactly one odd orthogonal tower (in a pair, as above) such that
the theta lift of π to that tower on the dimension level 2n+ 1 is non-zero. This follows from
the conservation conjecture, originally conjectured by Kudla and Rallis ([20]), and finally
proved (in the general case) by Sun and Zhu ([25]). In [6] (cf. Introduction there) the

following parameterization of the irreducible representations of ˜Sp(2n, F ) is given:

Irr ˜Sp(2n, F )←→ IrrSO(2n+ 1, F )+ ∪ IrrSO(2n+ 1, F )−. (5)

This bijection is given by the theta correspondence: for a given representation π of
˜Sp(2n, F ) we obtain a representation θ(π, 2n+ 1) 6= 0 in one of the towers, say ε ∈ {+,−}

(the lift to the other tower is zero) and then restrict it to a representation of SO(2n+1, F )ε.
This restriction remains irreducible, as we noted before. On the other hand, for a given
irreducible representation σ of SO(2n + 1, F )ε, exactly one of the two possible extensions
of this representation to O(2n + 1, F )ε participates in the theta correspondence with the

metaplectic group ˜Sp(2n, F ). We denote this (cf. (5)) slightly modified theta correspondence

by GSψ(·). That is, if π is an irreducible representation of ˜Sp(2n, F ), then

GSψ(π, 2n+ 1) = θ(π, 2n+ 1)|SO(2n+1,F )ε ; (6)

if σ is a representation of SO(2n+ 1, F )ε, then

GSψ(σ, 2n) = θ(σδ, 2n), (7)

where σδ is the unique extension of σ to O(2n+ 1, F )ε whose lift to ˜Sp(2n, F ) is non-zero.
Here δ ∈ {1,−1} denotes the value of the extended representation on −I ∈ O(2n+ 1, F )ε \
SO(2n+ 1, F )ε.

Now we give two results which we use later; although parts of this were known earlier
in some form (e.g. [23], Theorem 6.2), we are taking them in the form given in [6]. In the
formulations we take into account the fact that the Howe duality conjecture was meanwhile
proved (cf. [7]).

Proposition 3.1. (cf. Theorem 8.1.(i) and (ii) of [6]) For an irreducible tempered repre-

sentation π of ˜Sp(2n, F ), Θ(π, 2n + 1) (the non-zero full lift on the appropriate tower) is
irreducible and tempered. Moreover, if π is a discrete series representation, Θ(π, 2n+ 1) is
a discrete series representation (and of course, irreducible). An analogous claim holds for
irreducible tempered representations of orthogonal groups O(2n+ 1, F )ε.

Proposition 3.2. (cf. Theorem 8.1 (ii) and Theorem 1.3. (ii) of [6]) Let π be an irreducible

tempered representation of ˜Sp(2n, F ) such that

π ↪→ χψτ1 × χψτ2 × · · · × χψτr o π0,

where χψτ1, . . . , χψτr are irreducible discrete series representations of ˜GL(n1, F ), . . . , ˜GL(nr, F )

and π0 is an irreducible discrete series of ˜Sp(2n, F0). Then,

Θ(π, 2n+ 1) ↪→ τ1 × τ2 × · · · × τr oΘ(π0, 2n0 + 1).
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The analogous claim holds if we exchange Θ(π, 2n+1) and Θ(π0, 2n0+1) with GSψ(π, 2n+1)
and GSψ(π0, 2n0 + 1) (note that by Proposition 3.1, Θ(π0, 2n0 + 1) is an irreducible discrete
series representation).

To proceed, we need to calculate certain isotypic components for the subquotients of
Kudla’s filtration of R

P̃k
(ωV2n+1+2k,W2n+2k,ψ) (cf. [18], Theorem 2.8). This is a representation

of G̃Lk(F )× ˜Sp(2n, F )×O(V2n+1+2k). Let π be an irreducible representation of ˜Sp(2n, F ),
and δ be an irreducible representation of GL(k, F ). Recall from Section 2.2. that χψδ is a

representation of G̃Lk(F ). We concentrate on the odd dimensional tower for which Θ(π, 2n+
1) is non-zero. We have

R
P̃k

(ωV2n+1+2k,W2n+2k,ψ) = R0 ⊃ R1 ⊃ · · · ⊃ Rk ⊃ Rk+1 = 0,

where the successive quotients Ja = Ra/Ra+1 are G̃Lk(F ) × ˜Sp(2n, F ) × O(V2n+1+2k)–
invariant and described in Lemma 5.1 of [2]. In a manner very similar to what Muić has
done in [23] (cf. Lemmas 3.1, 3.2 and 3.3 there) for the symplectic-even orthogonal pairs,
we obtain an analogous result for the metaplectic-odd orthogonal pairs by using Kudla’s
filtration as given in Lemma 5.1 of [2]. These results of Muić were obtained by a very careful
analysis of the successive subquotients Ja of Kudla filtration, primarily using the second
Frobenius isomorphism, i.e., the second adjointness of Bernstein (cf. Chapter 3, Section 3
of [4]). The first part of the following lemma (dealing with the bottom part of the Kudla’s
filtration) and, especially, the third part (dealing with the top part of the filtration), are
much easier to prove; the second part (dealing with the intermediate parts of the filtration)
is more technical. The proof of all of them boils down to the use of the second adjointness
which addresses the space of certain intertwinings and precisely gives (by (4)) the isotypic
components in question.

Lemma 3.3. • Θ(χψδ ⊗ π, Jk) 6= 0 only if Θ(π, 2n+ 1) 6= 0 and then

Θ(χψδ ⊗ π, Jk) ∼= δ∨ oΘ(π, 2n+ 1).

• Assume 0 < a < k. Let Pka be the standard parabolic subgroup of GL(k, F ) isomorphic
to GL(k − a, F )×GL(a, F ), and let RPka

(δ∨)Ψ−1
ka

denote the maximal quotient of the

Jacquet module RPka
(δ∨) on which GL(k − a, F ) acts as the character (Ψka)

−1 =

(|det|
k−a
2 )−1 (so that RPka

(δ∨)Ψ−1
ka

is GL(a, F )–module). Assume that RPka
(δ∨)Ψ−1

ka
is

irreducible if non-zero. Then, Θ(χψδ⊗π, Ja) is non-zero only if RPka
(δ∨)Ψ−1

ka
6= 0 and

Θ(π, 2n+ 1− 2a+ 2k) 6= 0. In that case

Θ(χψδ ⊗ π, Ja) ∼= RPka
(δ∨)Ψ−1

ka
oΘ(π, 2n+ 1− 2a+ 2k).

• Θ(χψδ ⊗ π, J0) 6= 0 if and only if δ ∼= |det |
k
2
k and Θ(π, 2n+ 1 + 2k) 6= 0 and then

Θ(χψδ ⊗ π, J0) ∼= Θ(π, 2n+ 1 + 2k).

9



Remark. We will also use the analogous claim involving the filtration of the Jacquet module
RPk

(ωV2n+1+2k,W2n+2k,ψ), where Pk is a maximal parabolic subgroup of O(2n+ 1 + 2k)ε with
Levi subgroup isomorphic to GL(k, F )×O(2n+ 1, F )ε. Thus,

RPk
(ωV2n+1+2k,W2n+2k,ψ) = L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ Lk+1 = 0,

with Ia = La/La+1. So, if δ is an irreducible representation of GL(k, F ) and σ an irreducible
representation of O(2n+1, F )ε, there is a description of the isotypic components Θ(δ⊗σ, Ia)
analogous to the one in Lemma 3.3.

The following proposition is the key proposition in this article, from which our main
result readily follows. Recall that we have defined GSψ in (6) and (7).

Proposition 3.4. Let δ be an irreducible, square integrable (unitarizable) representation of

GLk(F ) and π be an irreducible tempered representation of ˜Sp(2n, F ). Then, the represen-
tation χψδ o π reduces if and only if δ o GSψ(π, 2n + 1) does. If χψδ o π reduces, then it
is a sum of two non-equivalent tempered representations. Moreover, assume that

δ oΘ(π, 2n+ 1) = T1 ⊕ T2,

where T1 and T2 are irreducible and non-equivalent (cf. Corollary 2.2, 2.). Then

χψδ o π = Θ(T1, 2n+ 2k)⊕Θ(T2, 2n+ 2k).

Here Θ(π, 2n + 1), Θ(T1, 2n + 2k) and Θ(T2, 2n + 2k) denote the full non-zero lifts on the
(same) appropriate tower.

Proof. First, assume that δ o GSψ(π, 2n + 1) is irreducible. Recall that an irreducible
representation of O(2n+1, F )ε is irreducible when restricted to SO(2n+1, F )ε ([21], Chapter
3, II. 5); by Proposition 3.1 δoΘ(π, 2n+ 1) is also irreducible. We prove that then χψδoπ
is irreducible.

We apply Lemma 3.3 with δ and π as in this Proposition. Since δ is a unitary repre-
sentation, the third possibility in the above Lemma cannot happen. Now we discuss the
second possibility. Having in mind what the Jacquet module with respect to a maximal
parabolic subgroup Pka for a discrete series representation of a general linear group looks
like (cf. [31], Section 3), if GL(k − a, F ) acts as a character, we must have k − a = 1.

But then δ = δ(χν−
k−1
2 , χν

k−1
2 ) for some unitary character χ. Moreover, RPk,k−1

(δ∨) =

χ∨ν
k−1
2 ⊗ δ(χ∨ν−

k−1
2 , χ∨ν

k−1
2
−1). But, k−1

2 6= −
1
2 , so the second possibility cannot happen.

We conclude that Θ(χψδ⊗π, Ja) 6= 0 only if a = k. This guarantees that the restriction
map

Hom ˜GL(k,F )× ˜Sp(W2n)
(R

P̃k
(ωV2n+1+2k,W2n+2k,ψ), χψδ⊗π)∞ → Hom ˜GL(k,F )× ˜Sp(W2n)

(Rk, χψδ⊗π)∞

is injective. Thus, using (4) and Lemma 3.3, we get

Hom ˜GL(k,F )× ˜Sp(W2n)
(R

P̃k
(ωV2n+1+2k,W2n+2k,ψ), χψδ ⊗ π)∞ ↪→ δ oΘ(π, 2n+ 1)∨.

Note that Θ(π, 2n + 1) is an irreducible (tempered) representation of an odd orthogonal
group, thus Θ(π, 2n+1)∨ ∼= Θ(π, 2n+1) (cf. [21], Chapter 4, II.1). The Frobenius reciprocity
then gives

Hom ˜Sp(W2n+2k)
(ωV2n+1+2k,W2n+2k,ψ, χψδ o π)∞ ↪→ δ oΘ(π, 2n+ 1).
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On the other hand, let χψδoπ = T1⊕T2⊕ · · · ⊕Tl, where Ti is irreducible tempered. Note
that Θ(Ti, 2n + 2k + 1) 6= 0 (we examine the lift on the same orthogonal tower for which
we have Θ(π, 2n + 1) 6= 0). Indeed, the Ti’s and π share the same discrete series support
on the smaller metaplectic group and the tower of the non-zero lift is determined by this
discrete series (cf. Proposition 3.2). Thus

0 6= ⊕li=1Hom ˜Sp(W2n+2k)
(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ ↪→

Hom ˜Sp(W2n+2k)
(ωV2n+1+2k,W2n+2k,ψ, χψδ o π)∞ ↪→

δ oΘ(π, 2n+ 1);

note that we assumed that δoΘ(π, 2n+1) is irreducible. Thus l = 1 and the representation
χψδ o π is irreducible.

Totally analogously, we prove that if χψδ o π is irreducible, so is δ o GSψ(π, 2n + 1).
We just emphasize the following subtlety. Assume that δoΘ(π, 2n+ 1) = T1⊕ · · · ⊕ Tl. As
above, we get

⊕li=1 HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ ↪→
HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, δ oΘ(π, 2n+ 1))∞ ↪→ (8)

χψδ o π∨.

We have to see if HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ 6= 0, i.e. is Ti the extension of

Ti|SO(2n+1+2k)ε which participates in the theta correspondence with ˜Sp(2n, F + 2k) ?(We
know that Θ(π, 2n+1) is!) This follows immediately from (8). Indeed, assume that Ti⊗detε0 ,
where ε0 ∈ {0, 1}, is such that Θ(Ti ⊗ detε0 , 2n + 2k) 6= 0. Then, we can repeat the same
reasoning as in (8), but for Ti ⊗ detε0 and δ o (Θ(π, 2n+ 1)⊗ detε0), and we get

0 6= HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti ⊗ det
ε0)∞ ↪→ χψδ oΘ(Θ(π, 2n+ 1)⊗ detε0 , 2n).

This means that Θ(Θ(π, 2n+ 1)⊗ detε0 , 2n) 6= 0, so ε0 = 0. Thus, we indeed have

HomO(V2n+1+2k)(ωV2n+1+2k,W2n+2k,ψ, Ti)∞ 6= 0.

Now assume that δ o GSψ(π, 2n + 1) is reducible (so is δ o Θ(π, 2n + 1)). This forces
δ∨ ∼= δ. Then, δoΘ(π, 2n+ 1) = T1⊕T2, where T1 and T2 are non-equivalent and tempered
(cf. Corollary 2.2, 2.). By previous reasoning, χψδoπ is reducible. By the remark just above,

T1 and T2 do participate in the theta correspondence with ˜Sp(2n, F + 2k). We further have

ωV2n+1+2k,W2n+2k,ψ � T1 ⊗Θ(T1, 2n+ 2k),

RPk
(ωV2n+1+2k,W2n+2k,ψ) � δ ⊗Θ(π, 2n+ 1)⊗Θ(T1, 2n+ 2k),

where, in the second line, we have an GLk(F )×O(2n+ 1, F )× ˜Sp(2n, F )–intertwining. We
have calculated above that (recall that Ia are subquotients in the filtrations, cf. Remark
after Lemma 3.3)

HomGL(k,F )×O(2n+1,F )(RPk
(ωV2n+1+2k,W2n+2k,ψ), δ ⊗Θ(π, 2n+ 1))∞ ↪→

HomGL(k,F )×O(2n+1,F )(I
k, δ ⊗Θ(π, 2n+ 1))∞ ∼= χψδ o π∨.
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Thus, Θ(T1, 2n + 2k) ≤ χψδ
∨ o π. The same calculation holds for T2, so that Θ(T1, 2n +

2k) + Θ(T2, 2n + 2k) ≤ χψδ o π. We will prove that we actually have equality. Recall
that Θ(Ti, 2n + 2k), i = 1, 2 is irreducible (cf. Proposition 3.1) and, by the Howe duality
conjecture, Θ(T1, 2n+ 2k) � Θ(T2, 2n+ 2k).

Now we calculate the multiplicity of χψδ ⊗ π in the Jacquet module R
P̃k

(χψδ o π). Let

δ = δ(ρν−
t−1
2 , ρν

t−1
2 ), where ρ ∼= ρ∨ is a cuspidal representation of GL(mρ, F ) with mρt = k.

Using Tadić’s formula (cf. [28]) checked for the metaplectic groups in [12] (cf. Section 3 and
Proposition 4.5), we count the multiplicity with which χψδ ⊗ π appears in

∑
δ′,σ1

t∑
i=0

i∑
j=0

χψ

(
δ(ρνi−

t−1
2 , ρν

t−1
2 )× δ(ρν

t+1
2
−j , ρν

t−1
2 )
)
× δ′ ⊗ δ(ρν

t+1
2
−i, ρν

t−1
2
−j)o σ1.

Here the first sum goes over all δ′ ⊗ σ1 which are in the Jacquet module of π with respect

to any maximal parabolic subgroup of ˜Sp(2n, F ). We easily get that the multiplicity is two
(for i = j = t and δ′ ⊗ σ1 = 1⊗ π and i = j = 0 and δ′ ⊗ σ1 = 1⊗ π) plus the multiplicity

of all the pieces of the form χψδ(ρν
− t−1

2 , ρν
t−1
2 )⊗ σ1 appearing in the appropriate Jacquet

module of π, with the additional property that π ≤ χψδ(ρν−
t−1
2 , ρν

t−1
2 )o σ1.

We now prove that the latter multiplicities are zero, i.e., that the multiplicity of χψδ⊗π
in the Jacquet module R

P̃k
(χψδ o π) equals two.

Assume that χψδ(ρν
− t−1

2 , ρν
t−1
2 ) ⊗ σ1 ≤ µ∗(π). Using transitivity of Jacquet modules

and projectivity of cuspidal representations in the category of smooth representations, we

get that there exists an irreducible representation σ2 of ˜Sp(2n, F − 2k) such that

π ↪→ χψ

(
ρν

t−1
2 × ρν

t−1
2
−1 × · · · × ρν−

t−1
2

)
o σ2.

Now, the Casselman temperedness criterion for π (Theorem 3.4. of [3]) forces σ2 to be
tempered, too. On the other hand,

Π(t1, t2, . . . , tl−1, tl) := δ(ρνtl−1+1, ρν
t−1
2 )× δ(ρνtl−2+1, ρνtl−1)× · · · × δ(ρν−

t−1
2 , ρνt1)

is a subrepresentation of

ρν
t−1
2 × ρν

t−1
2
−1 × · · · × ρν−

t−1
2 (9)

for any choice of

− t− 1

2
≤ t1 < t2 < · · · < tl−1 < tl =

t− 1

2
,

where ti − t−1
2 ∈ Z. Note that if l = t we get that Π(t1, t2, . . . , tl−1, tl) is exactly the

representation (9), so there are choices of t1, . . . , tl such that

π ↪→ χψΠ(t1, t2, . . . , tl)o σ2. (10)

Let l be the smallest integer such that (10) holds. Assume that l ≥ 2. Then, the minimality
of l guarantees that π can be embedded in the representation induced by any essentially
discrete series attached to any permutation of l intervals in Π(t1, t2, . . . , tl) (indeed, one
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can examine the kernel of the attached ”permutation” GL–induced intertwining operators).
Thus,

π ↪→ χψ

(
δ(ρν−

t−1
2 , ρνt1)× δ(ρνtl−1+1, ρν

t−1
2 )× δ(ρνtl−2+1, ρνtl−1)× · · · × δ(ρνt1+1, ρνt2)

)
oσ2.

Since t1 <
t−1

2 , this violates the temperedness criterion for π. This means l = 1, i.e.,

π ↪→ χψδ(ρν
− t−1

2 , ρν
t−1
2 )o σ2.

But, by Proposition 3.2, then

Θ(π, 2n+ 1) ↪→ δ(ρν−
t−1
2 , ρν

t−1
2 )o T

for some tempered representation T.According to Corollary 2.2 1. this means that δ(ρν−
t−1
2 , ρν

t−1
2 )o

Θ(π, 2n + 1) is irreducible, and this contradicts our assumption. Thus, there is no piece

of the form δ(ρν−
t−1
2 , ρν

t−1
2 )⊗ σ1 appearing in the appropriate Jacquet module of π, with

the additional property that π ≤ δ(ρν−
t−1
2 , ρν

t−1
2 )oσ1. This means that the multiplicity of

χψδ ⊗ π in the appropriate Jacquet module of χψδ o π is two. Therefore, χψδ o π cannot
have other summands except Θ(T1, 2n+ 2k) and Θ(T2, 2n+ 2k).

From this proposition, the theorem about R–groups for metaplectic groups readily fol-
lows.

Theorem 3.5. Let δ1, . . . , δk be (unitarizable) discrete series representations of GL(mi, F ), i =

1, 2, . . . , k. Let σ be an irreducible discrete series representation of ˜Sp(2n, F ). Then,

χψδ1 × χψδ2 × · · · × χψδk o σ

is a direct sum of 2m mutually inequivalent, irreducible tempered representations. Here m
is the number of mutually inequivalent δi’s such that χψδi o σ reduces.

Proof. We denote 2(m1 + · · ·+mk) = 2s. We prove this Theorem by induction over k. Here
we include in the induction the following claim
Claim
If χψδ1 × χψδ2 × · · · × χψδk o σ = T1 ⊕ · · · ⊕ Tr, where Ti, i = 1, 2, . . . , r is an irreducible
tempered representation, then

δ1 × δ2 × · · · × δk oΘ(σ, 2n+ 1) = Θ(T1, 2n+ 1 + 2s)⊕ · · · ⊕Θ(Tr, 2n+ 1 + 2s). (11)

Here, as before, Θ(σ, 2n + 1) denotes the full non-zero lift on the appropriate tower; note
that, by Proposition 3.1, Θ(σ, 2n + 1) is in irreducible discrete series, so we can apply
Theorem 2.1 to the left-hand side of (11). As discussed above, all the lifts Θ(Ti, 2n+1+2s)
(appearing on the right-hand side of (11)) on the same tower are non-zero (and irreducible
by Proposition 3.1).
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For k = 1 (for both Theorem and the Claim) we get a special case of Proposition 3.4.
Assume that the Theorem is valid for each k ≤ l − 1. We introduce some notation: let

Πl−1 = δ2 × · · · × δl oΘ(σ, 2n+ 1),

Πl = δ1 × δ2 × · · · × δl oΘ(σ, 2n+ 1) = δ1 oΠl−1,

Πψ,l−1 = χψδ2 × · · · × χψδl o σ,
Πψ,l = χψδ1 × χψδ2 × · · · × χψδl o σ = χψδ1 oΠψ,l−1.

Then, let
Πψ,l−1 = T1 ⊕ T2 ⊕ · · · ⊕ T2m , (12)

where the2m irreducible representations Ti are non-isomorphic tempered representations.
Now, we examine

Πψ,l = χψδ1 o T1 ⊕ · · · ⊕ χψδ1 o T2m . (13)

By our induction assumption (of the Claim) applied to (12),

Πl−1 = Θ(T1, 2n+ 1 + 2m2 + . . .+ 2ml)⊕ · · · ⊕Θ(T2m , 2n+ 1 + 2m2 + . . .+ 2ml), (14)

so that

Πl = δ1oΘ(T1, 2n+1+2m2 + . . .+2ml)⊕· · ·⊕δ1oΘ(T2m , 2n+1+2m2 + . . .+2ml). (15)

• Assume that χψδ1oσ is irreducible. By Proposition 3.4, this means that δ1oΘ(σ, 2n+1)
is irreducible. Then, by Theorem 2.1, the length of Πl−1 equals the length of Πl. This
also means that the lengths of the right-hand sides of (14) and (15) are the same, so
δ1oΘ(Ti, 2n+ 1 + 2m2 + . . .+ 2ml) is irreducible for each Ti, i = 1, 2, . . . , 2m. According to
Proposition 3.4, χψδ1 o Ti is irreducible for each i = 1, 2, . . . , 2m. Thus, by (13), the length
of Πψ,l equals the length of Πψ,l−1, i.e. it is equal to 2m.
• Assume that χψδ1o σ is reducible. By Proposition 3.4, this means that δ1oΘ(σ, 2n+ 1)
is reducible. Assume that there exists δi, i ∈ {2, 3, . . . , l} such that δ1

∼= δi; by Theorem
2.1, the length of Πl is equal to the length of Πl−1. Now again using the arguments like
those in the previous case, we have that the length of Πψ,l equals the length of Πψ,l−1, i.e.,
2m.
• Assume that χψδ1o σ is reducible and δ1 � δi, i ∈ {2, 3, . . . , l}. Then δ1oΘ(σ, 2n+ 1) is
reducible and, according to Theorem 2.1, the length of Πl is 2m+1. Thus, by (14), (15) and
the proof of Corollary 2.2, 2., δ1oΘ(Ti, 2n+ 1 + 2m2 + . . .+ 2ml) is reducible for each i. By
Proposition 3.4, every χψδ1 o Ti is reducible of length two, so by (12) and (13) the length
of Πψ,l is 2m+1. We have proved the theorem.
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