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Abstract. We give the characterization and description of all full
Hilbert C∗-modules and associated C∗-algebras having the property that
each relatively strictly closed submodule is orthogonally complemented. A
strict topology is determined by an essential closed two-sided ideal in the
associated algebra and a related ideal submodule. It is shown that these
are some modules over hereditary C∗-algebras containing the essential ideal
isomorphic to the algebra of (not necessarily all) compact operators on a
Hilbert space. The characterization and description of that broader class
of Hilbert modules and their associated C∗-algebras is given.

As auxiliary results we give properties of strict and relatively strict
submodule closures, the characterization of orthogonal closedness and or-
thogonal complementing property for single submodules, relation of rela-
tive strict topology and projections, properties of outer direct sums with
respect to the ideals in ℓ∞ and isomorphisms of Hilbert C∗-modules, and
we prove some properties of hereditary C∗-algebras and associated heredi-
tary modules with respect to the multiplier C∗-algebras, multiplier Hilbert
C∗-modules, corona algebras and corona modules.

1. Introduction and preliminaries

A (right) Hilbert C∗-module over a C∗-algebra A is a right A-module X
equipped with an A-valued inner product 〈·|·〉 which is A-linear in the second
and ∗-conjugate linear in the first variable such that X is a Banach space with
the norm ‖x‖ = ‖〈x|x〉‖

1
2 . X is a full Hilbert A-module if A = 〈X |X〉 where

〈X |X〉 is the closed linear span of all elements in the underlying C∗-algebra
A of the form 〈x|y〉, x, y ∈ X .
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For a submodule F of X we denote by F⊥ = {x ∈ X : 〈x|y〉 = 0, ∀y ∈
F} the orthogonal complement of F in X . Note that F⊥ is a norm-closed
submodule of X .

A submodule F ⊆ X is said to be orthogonally closed if F = F⊥⊥ and
orthogonally complemented if F ⊕ F⊥ = X . Observe that each of these two
properties implies that F is norm-closed.

If F ,G are submodules of X then, clearly, F ⊆ F⊥⊥ and F ⊆ G ⇒
G⊥ ⊆ F⊥. These two facts imply that, for each submodule F of X , we have
F⊥ = F⊥⊥⊥, i.e. F⊥ is orthogonally closed. It is proved in [9, Theorem 2]
that a submodule F of X is orthogonally complemented if and only if F ⊕
F⊥ is orthogonally closed. Every orthogonally complemented submodule is
orthogonally closed but the converse is not true in general (cf. [14] or see
Example 2.11).

Throughout the paperA is a C∗-algebra with an essential closed two-sided
ideal I and X is a Hilbert A-module. The ideal submodule XI of X associated
to I is XI = XI = {x ∈ X : 〈x|x〉 ∈ I} = {x ∈ X : 〈x|y〉 ∈ I, ∀y ∈ X}. If X
is a full module, then XI is full as a Hilbert I-module.

Recall that there exists a so called multiplier module M(XI) of XI that
is a (not necessarily full) Hilbert C∗-module over the multiplier algebraM(I)
and contains XI . Besides the norm topology,M(XI) is also endowed with the
strict topology induced by XI . This is the topology induced by two families
of seminorms: v 7→ ‖〈v|y〉‖, (y ∈ XI), and v 7→ ‖vb‖, (b ∈ I). The strict
topology is Hausdorff since I is an essential ideal in A. A net (vλ) in M(XI)
converges strictly to v ∈M(XI), which is denoted by v = st− limλ vλ, if and
only if 〈v|y〉 = limλ〈vλ|y〉, ∀y ∈ XI , and vb = limλ vλb, ∀b ∈ I. It is known
that XI is strictly dense in M(XI); moreover, it turns out that M(XI) is
the strict completion of XI . Also, if XI is a full I-module, we can look at
M(XI) as the largest Hilbert C∗-module over the C∗-algebra containing I as
an essential ideal such that XI is its ideal submodule with respect to I (see
Proposition 4.11). We denote by C(I) =M(I)/I the corona algebra of I, by
C(XI) = M(XI)/XI corona module of XI . Let Π : M(XI) → C(XI) be the
canonical π : M(I) → C(I)-morphism of modules. For these and other facts
concerning the strict topology and the multiplier module M(XI) we refer the
reader to [5, 6, 7].

Suppose now, that (eλ) is any approximate unit for I. For each x ∈ X we
have ∀b ∈ I, limλ xeλb = limλ xbeλ = xb ∈ XI and ∀y ∈ XI , limλ〈y|xeλ〉 =
limλ〈y|x〉eλ = 〈y|x〉 ∈ I. If we identify x with the strict limit of the net (xeλ),
we can regard X as a submodule ofM(XI). Thus, we have XI ⊆ X ⊆M(XI)
and this allows us to analyze phenomena in X by working in the larger module
M(XI).

Suppose we are given a submodule F of X . We denote by F⊥X the
orthogonal complement of F in X and by F⊥ the orthogonal complement of
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F in M(XI). Obviously, F⊥X = F⊥ ∩X . We now say that F is orthogonally
closed in X if F = F⊥X⊥X = F⊥⊥ ∩ X .

In a similar fashion we define the concept of strict closedness in X . First,
we denote by cℓ(F) and cℓst(F) the closure of F inM(XI) with respect to the
norm topology and the strict topology, respectively. Obviously, since F ⊆ X
and X is norm-closed inM(XI), we have cℓ(F) ⊆ X . On the other hand, since
X is not closed in M(XI) with the respect to the strict topology, cℓst(F) is in
general not contained in X . The relative strict closure of F in X is denoted
by cℓst

X
(F). By definition, we have cℓst

X
(F) = cℓst(F) ∩ X . We now say that

F is strictly closed in X if F = cℓst
X
(F), i.e. if F is closed in X with respect

to the relative strict topology on X .
These relative concepts of closedness of submodules of X , when X is

regarded as a submodule ofM(XI), are the main technical tools of the paper.
Results similar to the ones presented in this article, but for the special case
A = M(I), the multiplier algebra of a C∗-algebra I, and X = M(XI), the
strict completion of XI , can be found in [9] and the special case A = I
and X = XI can be found in [11] and [14]. They are extended here to an
entire class of (not necessarily strictly complete) full Hilbert A-modules where
I ⊆ A ⊆M(I).

Further, by ha(B) we denote the set of all hereditary C∗-subalgebras of
some C∗-algebra B, and these are C∗-subalgebras A having the property that
if for 0 ≤ b ∈ B there exists 0 ≤ a ∈ A such that b ≤ a then b ∈ A. The useful
characterization of hereditary C∗-subalgebrasA ∈ ha(B) is ABA = A (cf. [12,
3.2.2. Theorem] and Remark 4.24). For a nonempty set S ⊂ B we denote by
haS(B) the set of all C

∗-algebras from ha(B) containing S. Note that each two-
sided ideal is also a hereditary C∗-subalgebra, and in the case of commutative
C∗-algebras the reverse is also true. Important for the construction is the fact
that hereditary C∗-subalgebras of some C∗-algebra are connected by bijection
to the closed left ideals in that C∗-algebra, i.e. every C∗-algebra A ∈ ha(B) is
of the form A = L∗ ∩ L, where L is unique left ideal of B with this property
(cf. [12, 3.2.1.Theorem]). Moreover, we have A = L∗L (see Remark 4.23),
and this makes it easier to construct hereditary C∗-algebras from left ideals.

Analogously to the ideal submodules we expand the definition to the
hereditary modules over hereditary subalgebras. For each full Hilbert B-
module X and A ∈ ha(B) we denote module XA = XA = {x ∈ X : 〈x|x〉 ∈
A} = {x ∈ X : |〈y|x〉| ∈ A, ∀y ∈ X}, a full Hilbert A-module in X which
is generally not a submodule of X (see Proposition 4.25), and we call it the
hereditary A-module of X . We denote by hm(X ) the set of all hereditary
C∗-modules of the Hilbert C∗-module X and for nonempty set S ⊂ X we
denote by hmS(X ) the set of all C∗-submodules in hm(X ) containing S.

If X and Y are Hilbert A-modules, we denote by Ba(X ,Y) the Banach
space of all adjointable operators from X to Y. When X = Y we write
Ba(X ) instead of Ba(X ,X ), and this is a C∗-algebra. The Banach space of
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all ”compact” operators from X to Y is denoted by K(X ,Y), respectively
K(X ), and they are generated by elementary ”compact” operators Θy,x, for
all x ∈ X , y ∈ Y acting as Θy,xz = y〈x|z〉, for all z ∈ X .

Outer direct sums of families of C∗-algebras and Hilbert C∗-modules are
essentially used in this paper. Let J be any nonempty set and let C∞ = ℓ∞(J )
be the set of all bounded functions c : J → C (usually we write c = (cj)j∈J ,
c(j) = cj, j ∈ J ) which is a commutative C∗-algebra with the pointwise
(componentwise) operations of addition, multiplication, conjugation and norm
‖c‖∞ = supj∈J |cj |. Its C∗-subalgebra and essential ideal C0 is a set of all
functions c : J → C that vanish at infinity, i.e. for every ε > 0 is |cj | ≥ ε
for only a finite number of j ∈ J , or equivalently, for any injective sequence
(jn)n in J the sequence (cjn)n converges to 0 (we write limj∈J cj = 0).

Let (Bj , ‖ · ‖j)j∈J be a family of Banach spaces. For any closed ideal C
of C∞ containing C0 we denote the outer direct sum

(1.1) C-⊕j∈J Bj = {x=(xj)j∈J ∈Πj∈J Bj : (‖xj‖j)j∈J ∈C}.

The set C- ⊕j∈J Bj is a Banach space with the norm ‖x‖∞ = supj∈J ‖xj‖j
and componentwise operations.

In the case Bj, j ∈ J , are C∗-algebras or Hilbert C∗-modules we assume
that C- ⊕j∈J Bj is a C∗-algebra or Hilbert C∗-module with componentwise
operations. If B = (Bj , ‖ · ‖j)j∈J with the norm ‖ · ‖∞ is a Banach space we
have C0-⊕j∈J Bj ⊆ B ⊆ C∞-⊕j∈J Bj (see Lemma 4.15). Also, sums defined
by (1.1) naturally preserve the properties of ideals and hereditary C∗-algebras
as well as ideal submodules and hereditary modules (see Lemma 4.34).

In what follows, by the C∗-algebra of compact operators on a Hilbert
space we mean the C∗-algebra of not necessarily all compact operators on
that space.

The first objective of this paper is to give different types of characteriza-
tions and description of all full Hilbert modules and their associated algebras
containing the essential ideal isomorphic to some C∗-algebra of compact op-
erators on a Hilbert space.

The second objective is to characterize and describe all full Hilbert mod-
ules and their associated algebras with the property that each relatively
strictly closed submodule is orthogonally complemented. It turns out that
this is a class of hereditary A-modules of M(XK), where A is a hereditary
subalgebra of M(K) containing K with K isomorphic to the C∗-algebra of
compact operators on a Hilbert space.

Much of the article is filled with auxiliary results that may be interesting
in a broader context as well. They contain results related to the properties
of strict and relatively strict closures of submodules, we give the topologi-
cal characterization of orthogonal closedness and orthogonal complementing
property for individual submodules of Hilbert C∗-modules over C∗-algebras
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containing essential ideals, some results on strict orthogonal bases, connec-
tion of relative strict topology and projections, properties of outer direct sums
with respect to ideals in C∞ and isomorphisms of Hilbert C∗-modules and we
prove some claims on hereditary C∗-algebras and corresponding hereditary
modules.

For a better overview of the results, we present the main claims in the
first three theorems and proposition. Other statements used in the proofs
of these main results, as well as some additional results related to them, are
formulated and proved in the last part of the paper.

2. The main results

First we give characterizations and descriptions of a class of full Hilbert
C∗-modules over C∗-algebras containing an essential ideal isomorphic to some
C∗-algebra of compact operators on a Hilbert space.

Theorem 2.1. Let A be C∗-algebra with an essential ideal I and let X
be a full Hilbert A-module. The following statements are equivalent:

(i) I is isomorphic to some C∗-algebra of compact operators on a Hilbert
space.

(ii) Each relatively strictly closed submodule in X is orthogonally closed.
(iii) For every relatively strictly closed submodule F in X the submodule

F ⊕ F⊥X is relatively strictly dense in X , i.e. X = cℓst
X
(F ⊕ F⊥X ).

(iv) There is a strict orthogonal bases for X .
(v) There are families of Hilbert spaces (Hj)j∈J , (Gj)j∈J , a family of

C∗-algebras A = (Aj)j∈J ,

(2.1) K(Hj) ⊆ Aj ⊆ B(Hj), j ∈ J ,

and a family of Banach spaces of bounded linear operators X =
(Xj)j∈J ,

(2.2) K(Hj , Gj) ⊆ Xj ⊆ B(Hj , Gj), j ∈ J ,

such that I is isomorphic to the C∗-algebra C0- ⊕j K(Hj), the ideal
submodule XI is isomorphic to the C0-⊕j K(Hj , Gj) and the A-module
X is isomorphic to the A-module X.

Remark 2.2. In the case when A = I and X = XI in the previous
theorem the relatively strict topology and the norm topology coincide on
submodules (see Lemma 4.1). Then (i) ⇔ (ii) coincide with the result by J.
Schweizer [14, Theorem 1.], and considering that the orthogonal sum of closed
submodules is closed, (i) ⇔ (iii) coincide with the result by B. Magajna [11,
Theorem 1.]. Also, in that case (i) ⇔ (iv) is the same as by Lj. Arambašić
[1, Corollary 7.]. Moreover, in the case A = M(I) and X = M(XI) result
(i) ⇔ (ii) ⇔ (iii), together with the fact that F ⊕ F⊥X is strictly closed, is
proved in [9, Theorems 3.4 and 3.5].
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In what follows we say that a Hilbert C∗-module has the complementing
property if each of its relatively strictly closed submodules is complemented.

In a class of full Hilbert C∗-modules over C∗-algebras containing an es-
sential ideal isomorphic to some C∗-algebra of compact operators on a Hilbert
space, one can characterize full Hilbert modules with complementing property
by conditions that are not sufficient for the characterization of the comple-
menting property in the class of all full Hilbert C∗-modules with arbitrary
essential ideals, but they are certainly necessary.

Theorem 2.3. Let A be a C∗-algebra with an essential ideal K isomorphic
to some C∗-algebra of compact operators on a Hilbert space and let X be a
full Hilbert A-module. The following statements are equivalent.

(i) The Hilbert A-module X has the complementing property.
(ii) For each relatively strictly closed submodule F ⊆ X the orthogonal sum

F ⊕ F⊥X is relatively strictly closed in X .
(iii) For every relatively strictly closed submodules F ,G ⊆ X ,F ⊥ G, the

orthogonal sum F ⊕ G is relatively strictly closed inX .
(iv) The C∗-algebras Ba(X ) and Ba(XK) of all adjointable operators on X

and XK, respectively, are isomorphic by isomorphism acting as restric-
tion.

Remark 2.4. We show that condition (iv) in the previous theorem
is not generally sufficient to characterize the complementing property of a
full Hilbert module over a C∗-algebra with some essential ideal. Let H
be a non-separable Hilbert space and let I be an ideal of B(H) for which
K(H) $ I $ B(H). Then M(I) = B(H) (see Lemma 4.31) and let X
be a strictly complete full B(H)-module and XI its ideal submodule. Then
X =M(XI) and Ba(M(XI)) = Ba(X) is isomorphic to Ba(XI) with an iso-
morphism acting as a restriction (see [6, Theorem 2.3]). If X would have the
complementing property then I would be isomorphic to some C∗-algebra of
compact operators on Hilbert space (see [9, Theorem 3.4.]), which is contrary
to the choice of the ideal I.

In the following theorem we characterize and describe the class of all full
Hilbert C∗-modules which have the complementing property.

Theorem 2.5. Let A be a C∗-algebra with an essential ideal I and let X
be a full Hilbert A-module. The following statements are equivalent.

(i) The Hilbert A-module X has the complementing property.
(ii) I is isomorphic to some C∗-algebra of compact operators on a Hilbert

space, the C∗-algebra A ∈ haI(M(I)) and the Hilbert A-module X =
M(XI)A ∈ hmXI

(M(XI)).
(iii) There are families of Hilbert spaces (Hj)j∈J , (Gj)j∈J , a C∗-algebra

A = (Aj)j∈J ∈ ha
K
(M(K)) as in (2.1) and an A-module X =

(Xj)j∈J ∈ hm
XK

(M(XK)) as in (2.2), such that K = C0- ⊕j K(Hj),
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the ideal submodule XK = C0-⊕jK(Hj , Gj), I is isomorphic to K and
the A-module X is isomorphic to A-module X.

Remark 2.6. It turns out that the set of all C∗-algebras in Theorem 2.1
(v) is bijectively related to the set of all C∗-subalgebras in the corona algebras
of all C∗-algebras of compact operators on Hilbert spaces, and the subset of
all hereditary C∗-subalgebras in Theorem 2.5 is in bijective relation to the
subset of all hereditary C∗-subalgebras of corona algebras of all C∗-algebras
of compact operators in Hilbert spaces.

Also the set of all full Hilbert C∗-modules in Theorem 2.1 (v) is in bijective
relation to the set of all full C∗-submodules in the corona modules of all C∗-
modules over C∗-algebras of compact operators in Hilbert spaces, and the
set of all C∗-modules with the complementing property in Theorem 2.5 is
in a bijective relation to the set of all hereditary C∗-modules in the corona
modules of all C∗-modules over C∗-algebras of compact operators in Hilbert
spaces (see Proposition 4.30).

Remark 2.7. It follows from Theorem 2.5 that Hilbert C∗-modules with
the complementing property are these and only these Hilbert C∗-modules
which are hereditary modules of the multiplier modules of Hilbert C∗-modules
over algebras isomorphic to some C∗-algebra of compact operators on a
Hilbert space. With the intention to show that there are many such mod-
ules we give a way of constructing them.

Let us start from any Hilbert C∗-module over the algebra of compact op-
eratorsK. It is isomorphic to the K-module XK = C0-⊕j∈J K(Hj , Gj), where
K = C0- ⊕j∈J K(Hj), its multiplier module is M(XK) = C∞- ⊕j B(Hj , Gj)
and (Hj), (Gj) are families of Hilbert spaces (see Proposition 4.16).

Now the construction begins from the basic Hilbert C∗-module K(H,G)
over the C∗-algebra K(H) and its multipliers B(H)-module B(H,G). There
is bijective connection between algebras in ha

K(H)(I) ⊆ ha
K(H)(B(H)) and

modules in hm
K(H,G)(B(H,G)), where I is an ideal of B(H) generated by

B(G,H)B(H,G), i.e. each A-module X = B(H,G)A ∈ hm
K(H,G)(B(H,G))

is uniquely determined by a C∗-subalgebra A ∈ ha
K(H)(I) (see Proposi-

tion 4.32).
The bijective correspondence between left ideals and hereditary sub-

algebras in every C∗-algebra is also well known. Therefore, for any set
S ⊂ B(H) \ K(H) we have a left ideal L = cℓ(span(B(H)S +K(H))) in
B(H) containingK(H), and then A = L∗L = cℓ(span(S∗B(H)S +K(H))) ∈
ha

K(H)(B(H)) is a corresponding hereditary subalgebra (see Remark 4.23).
Further, the construction of Hilbert C∗-modules with the complementing

property can be continued as follows. Take any family of hereditary C∗-
algebras A = (Aj)j∈J , any family X = (Xj)j∈J of hereditary Hilbert Aj-
modules and an ideal C of C∞ containing C0. Then the outer direct sum
C- ⊕j∈J Aj is a hereditary C∗-algebra of M(K) containing K. Due to the
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fact that C- ⊕j∈J Xj is a Hilbert C- ⊕j∈J Aj -module and that C is an ideal
in C∞, it follows that X = C- ⊕j∈J Xj = M(XK)C- ⊕j∈J Aj is a hereditary
module of M(XK) which contains XK (see Lemma 4.34).

Finally, we prove an important hereditary property of Hilbert C∗-modules
having the complementing property. Namely we claim that any relatively
strictly closed submodule of such a module possesses the complementing prop-
erty.

Proposition 2.8. Let X = (Xj)j∈J be a full hereditary Hilbert A-module
of M(XK) and A = (Aj)j∈J ∈ haK(M(K)), where K = C0-⊕j∈J Kj and Kj is
isomorphic to the C∗-algebra of all compact operators on some Hilbert space
Hj, j ∈ J . Then every relatively strictly closed submodule Y = (Yj)j∈J in X
is a hereditary (not necessarily full) A-module of M(YK).

We have 〈Yj |Yj〉j = Aj or 〈Y
⊥Xj

j |Y
⊥Xj

j 〉j = Aj , for all j ∈ J . Moreover,

if p = (pj)j∈J ∈ Ba(M(XK)) is a projection such that Y = pX , then for all
j ∈ J we have 〈Yj |Yj〉j = Ij, where Ij is an ideal of Aj containing Kj , if
and only if Yj = YjIj

. If Hj is a separable Hilbert space then 〈Yj |Yj〉j = Aj

or 〈Yj |Yj〉j = Kj , for all j ∈ J .

Remark 2.9. We draw attention to the fact that the strict and relatively
strict topologies in the submodules Y and the Hilbert module X are not the
same. Namely in submodules the strict topology is given by the smaller set
of seminorms in relation to the smaller ideal submodule YK ⊆ XK, i.e. the
topology of the submodule is weaker than the topology of the module.

Remark 2.10. We note that the characterization (iv) in Theorem 2.3,
together with the existence of strict orthogonal bases, allows almost direct
transfer of results on bounded linear operators on Hilbert spaces to adjointable
modular operators on a full Hilbert C∗-modules with the complementing prop-
erty and also a transfer of partial results on a full Hilbert C∗-module over
algebras containing essential ideal isomorphic to a C∗-algebra of compact op-
erators on a Hilbert space. These properties are also helpful when working
with unbounded operators in previously mentioned Hilbert C∗-modules.

In the following example we discuss some basic C∗-algebras and Hilbert
C∗-modules with complementing property and those without it.

Example 2.11. Let H be an infinite-dimensional separable Hilbert space,
let B(H) be a C∗-algebra of all bounded operators on H and let K(H) be a
C∗-algebra of all compact operators on H .

Then for a C∗-algebra A, where K(H) ⊂ A ⊆ B(H), K(H) is unique
proper essential ideal in A and B(H). In B(H) we define inner product
∀x, y ∈ B(H), 〈x|y〉 = x∗y with which K(H), A and B(H) are full right
Hilbert C∗-modules over K(H), A and B(H), respectively. The strict topol-
ogy in these modules is the standard strict topology in B(H) generated by
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K(H). Submodules in these Hilbert modules are right ideals in corresponding
algebras, and an ideal submodule of A and B(H) is K(H).

As for Hilbert modules in which each relatively strictly closed submodule
is orthogonally complemented in this example we have basic casesA = K(H),
X = K(H) and A = B(H), X = B(H). Also, for any projection p ∈
B(H) with infinite rank and kernel A = pB(H)p+K(H) is a hereditary C∗-
subalgebra of B(H) containing K(H), and the associated hereditary module
is X = B(H)A = B(H)p +K(H). By the way, the multiplier algebra of A
is M(A) = pB(H)p + (e − p)B(H)(e − p) + K(H), where e is the unit in
B(H). Note that the C∗-algebra Y = A is also a full Hilbert C∗-module
over A, but Y = pB(H)p + K(H) $ X. This implies that some relatively
strictly closed submodules in Y are not complemented. In order to determine
which submodules are complemented we decompose the Hilbert space H as
H = R⊕L, where R = pH , L = (e−p)H . From that representation it follows

that the projection p has a 2×2 matrix form p =

[
e1 03
0∗3 02

]
where e1 ∈ B(R) is

the unit, 03 ∈ B(L,R), 02 ∈ B(R), and therefore, Y =

[
B(R) K(L,R)

K(R,L) K(L)

]
.

Any projection q from B(H) can be identified with the matrix q =

[
a c
c∗ b

]
,

where a ∈ B(R), b, e2 ∈ B(L), e2 is the unit, and c ∈ B(L,R) such that
0 ≤ a ≤ e1, 0 ≤ b ≤ e2, cc

∗ = a(e1 − a), c∗c = b(e2 − b) and ac = c(e2 − b),

i.e. a = 1
2 (e1 ± (e1 − 4cc∗)

1
2 ) and b = 1

2 (e2 ∓ (e2 − 4c∗c)
1
2 ). Then qY is of the

form qY =

[
aB(R) + cK(R,L) aK(L,R) + cK(L)
c∗B(R) + bK(R,L) c∗K(L,R) + bK(L)

]
. From that it follows

qY ⊆ Y ⇔ c∗B(R) ⊆ K(R,L) ⇔ c ∈ K(L,R). Thus, according to the
Proposition 4.13 below, complemented are those and only those submodules
in Y of the form qB(H)∩Y = qY for which the c component of the projection
q is a compact operator. Other submodules of the form qB(H) ∩ Y are
not complemented in Y, but they are relatively strictly closed in Y (see
Proposition 4.14) and hence orthogonally closed in Y by Theorem 2.1.

Let us consider now A = Ce + K(H), a minimal unitization of K(H),
which is not a hereditary C∗-subalgebra of B(H). From Proposition 4.14 we
know that every submodule in A which is closed with respect to the relatively
strict topology, which is also orthogonally closed in A by Corollary 4.6, is of
the form G = (e − p)B(H) ∩ A for some projection p ∈ B(H). Then every
t ∈ G is of the form t = (e − p)b = αe + k for some b ∈ B(H), k ∈ K(H)
and α ∈ C. This implies that the compact operator k can be represented as
k = (e− p)b−αe for some b ∈ B(H) and α ∈ C. Then pk = −αp, and this is
possible if and only if either α = 0 or the dimension of the range of p is finite.

Relatively strictly closed submodules in A defined by projections with
infinite-dimensional range and kernel are closed submodules of K(H) (case
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α = 0), i.e. G = (e − p)K(H) and G⊥A = G⊥K(H) = pK(H). They are not
complemented in A, but they are complemented in K(H), i.e. G ⊕ G⊥A =
K(H), so the orthogonal sum is not relatively strictly closed in A, but it
is relatively strictly dense in A. This submodule G is also an example of a
submodule that is orthogonally closed in A but not complemented in A.

Consider a relatively strictly closed submodule in A that is defined by a
projection with a finite-dimensional range or kernel. Then exactly one of the
projections p or e − p is in K(H). If this is p, then pA = Cp + pK(H) ⊂
K(H) ⊂ A, and then we have (e − p)A ⊆ A − pA ⊆ A, which gives A =
(e−p)A⊕pA = G⊕G⊥A . Thus, submodules are orthogonally complemented
in A if and only if the associated projection has a finite-dimensional range or
kernel.

3. Proof of the main results

Most of the claims and technical results needed in the following proofs of
main results are found in Section 4.

Proof of Theorem 2.1. [(i) ⇔ (ii)] Let I be isomorphic to some
C∗-algebra of compact operators on a Hilbert space. Then for each relatively
strictly closed submodule F ⊆ X the associated submodule FI ⊆ XI is
closed, so it follows from [14, Theorem 1] that it is orthogonally closed in XI ,

i.e. FI = (FI)⊥XI
⊥XI . Applying the first assertion of Theorem 4.5 we have

that F is orthogonally closed in X .
Suppose that each relatively strictly closed submodule F ⊆ X is or-

thogonally closed in X . Let us take any closed submodule G ⊆ XI . Then
cℓst

X
(G) ⊆ X is relatively strictly closed submodule and by assumption it is or-

thogonally closed in X , i.e. cℓst
X
(G) = (cℓst

X
(G))

⊥X⊥X . Multiplying both sides
of the equality by I, using Lemma 4.1(i), (vi) and Lemma 4.2(iii), we have

G = GI = cℓst
X
(G)I = (cℓst

X
(G))

⊥X⊥X I = G⊥XI
⊥XI , i.e. G is orthogonally

closed in XI . From [14, Theorem 1] it follows that I is isomorphic to some
C∗-algebra of compact operators on a Hilbert space.

[(i) ⇔ (iii)] Suppose that for each relatively strictly closed submod-
ule F ⊆ X the submodule F ⊕ F⊥X is relatively strictly dense in X . Let
us take any closed submodule G ⊆ XI . Then cℓst

X
(G) is relatively strictly

closed submodule in X and by assumption, using Lemma 4.2(ii) we get
cℓst

X
(cℓst

X
(G) ⊕ G⊥X ) = X . Multiplying both sides of the equality by I, us-

ing Lemma 4.1(v), (vi) and Lemma 4.2(ii), (iii), we have G ⊕ G⊥XI = XI ,
i.e. G is orthogonally complemented in XI . From [11, Theorem 1] we con-
clude that I is isomorphic to some C∗-algebra of compact operators on a
Hilbert space.

If I is isomorphic to some C∗-algebra of compact operators on a Hilbert
space, then for each relatively strictly closed submodule F ⊆ X associated
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submodule FI ⊆ XI is closed and [11, Theorem 1] implies that it is orthog-

onally complemented in XI . Now we have (F ⊕ F⊥X )I = FI ⊕ (FI)⊥XI =
XI = XI and by Lemma 4.1(iv) it follows cℓst

X
(F ⊕ F⊥X ) = cℓst

X
(X ) = X .

[(i) ⇔ (iv)] If I is an ideal isomorphic to some C∗-algebra of compact
operators on a Hilbert space, then Theorem 4.9 ensures the existence of a
strict orthogonal bases (SOB) for X (see Definition 4.7).

Conversely, if there is a SOB for X , then it is an orthogonal basis for the
full I-module XI . Namely for the SOB (xλ)λ∈Λ from the Definition 4.7 we
have pλ = p∗λ = p2λ, i.e. ∀λ ∈ Λ, pλ is a minimal projection in A. Actually,
pλApλ = Cpλ gives pλIpλ = Cpλ ⊂ I (see Remark 4.8), so then pλ ∈ I
and 〈xλ, xλ〉 = pλ ∈ I imply xλ ∈ XI . Because the strict frame in XI

converges in the norm topology in XI (cf. [2, Proposition 3.10.]), SOB is an
orthogonal basis for XI . From the characterization of Hilbert C∗-modules
over compact algebras [1, Corollary 7] this is equivalent to the fact that I
is an ideal isomorphic to some C∗-algebra of compact operators on a Hilbert
space.

[(i) ⇔ (v)] Suppose that (i) holds true, i.e. let J be a nonempty set,
(Hj)j∈J is a family of Hilbert spaces and ψ0 : K → K is isomorphism of
algebras where K is of the form (4.1). By Proposition 4.10 we can extend
this isomorphism to the isomorphism ψ : M(K) → M(K) where M(K) = B
is of the form (4.3). Then, because K ⊆ A ⊆ M(K), for ψ(A) = A we
have inclusions K = C0-⊕j K(Hj) ⊆ A ⊆ C∞- ⊕j B(Hj) = B, and this gives
A = (Aj)j∈J , with K(Hj) ⊆ Aj ⊆ B(Hj), j ∈ J . The conclusion holds
since the center is assumed to be atomic.

Furthermore, for the Hilbert module XK there is also a family of Hilbert
spaces (Gj)j∈J such that XK is isomorphic by ψ0-isomorphism Ψ0 : XK → XK

to the Hilbert C∗-module XK = C0- ⊕j K(Hj , Gj) (cf. [14, Theorem 1.]).
Proposition 4.10 gives the possibility to extend that isomorphism of Hilbert
modules to the ψ-isomorphism Ψ : M(XK) → M(XK). By Proposition 4.17
we have M(XK) = C∞- ⊕j B(Hj , Gj). For Hilbert C∗-module Ψ(X ) = X
we have XK ⊆ X ⊆ M(XK), that is, we have inclusion C0-⊕j K(Hj , Gj)
⊆ X ⊆ C∞-⊕j B(Hj , Gj). It follows that X = (Xj)j∈J , where K(Hj , Gj) ⊆
Xj ⊆ B(Hj , Gj), j ∈ J .

Conclusion (v) ⇒ (i) is obvious.

Proof of Theorem 2.3. [(i) ⇔ (ii)] The claim follows directly from
the second claim in Corollary 4.6.

[(i) ⇒ (iii) ⇒ (ii)] Let (i) holds true. Take any two relatively strictly
closed submodules F ,G ⊆ X such that F ⊥ G. By assumption they are
complemented in X and by Proposition 4.13 there are projections P,Q ∈
Ba(M(XK)) and P̂ = P |X , Q̂ = Q|X ∈ Ba(X ) such that F = PM(XK)∩X =

PX = P̂X , G = QM(XK) ∩ X = QX = Q̂X and X is invariant module for

P and Q, where P̂ , Q̂ are restrictions of P,Q on X , respectively. Also, due to
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the mutual orthogonality of submodules F and G we have the orthogonality
of their strict closures cℓst(F) = PM(XK) ⊥ QM(XK) = cℓst(G). This
implies PQ = QP = 0, and then P + Q is a projection in Ba(M(XK)) and
X is invariant module for P + Q. From Proposition 4.13 we have that the

submodule (P + Q)M(XK) ∩ X = (P̂ + Q̂)X is orthogonally complemented

in X , therefore, it is also relatively strictly closed. The equality (P̂ + Q̂)X =

P̂X ⊕ Q̂X is required to prove the claim. It is clear that we have (P̂ +

Q̂)X ⊆ P̂X ⊕ Q̂X . Let us take any x ∈ ((P̂ + Q̂)X )
⊥X

= N (P̂ + Q̂) and we

have P̂ x + Q̂x = 0. Multiplying the previous equality by P̂ and Q̂ we get

P̂ x = Q̂x = 0, hence x ∈ N (P̂ )∩N (Q̂). Because of equalities N (P̂ )∩N (Q̂) =

(P̂X )
⊥X

∩ (Q̂X )
⊥X

= (P̂X ⊕ Q̂X )
⊥X

(for the last one cf. [9, Lemma 1.4.])

we have ((P̂ + Q̂)X )
⊥X

⊆ (P̂X ⊕ Q̂X )
⊥X

. Now complementing the previous

inclusion and because (P̂ + Q̂)X is orthogonally closed in X we have P̂X ⊕

Q̂X ⊆ (P̂X ⊕ Q̂X )
⊥X⊥X

⊆ ((P̂ + Q̂)X )
⊥X⊥X

= (P̂ + Q̂)X , i.e. (iii) holds
true.

Conclusion (iii) ⇒ (ii) is obvious.
[(i) ⇔ (iv)] Suppose that (iv) holds true, i.e. we have that β defined in

(4.16) is an isomorphism of C∗-algebras. Assuming that essential ideal K of
A is isomorphic to some C∗-algebra of compact operators on a Hilbert space,
it is well known that in XK all closed submodules are complemented (see [11,
Theorem 1.]). Therefore, by Lemma 4.27 we have that all relatively strictly
closed submodules in X are complemented, i.e. (i) holds true.

Vice versa, let us suppose that each relatively strictly closed submodule
in X is orthogonally complemented in X . In order to prove the surjective
nature of morphism γ = α−1 ◦ β, where α and β are from (4.15) and (4.16),
respectively, let us take any projection P ∈ Ba(M(XK)). Then by Proposi-
tion 4.14 submodule G = PM(XK) ∩ X is relatively strictly closed in X , and
by assumption it is orthogonally complemented in X . From Proposition 4.13
we have that X is invariant module for projection P ∈ Ba(M(XK)).

Consequently P̂ = P |X ∈ Ba(X ) is the projection such that γ(P̂ ) =
P ∈ R(γ), i.e. restriction of monomorphism γ is a bijection from the set of all
projections in Ba(X ) onto the set of all projections in Ba(M(XK)). Moreover,
because α is isomorphism of C∗-algebras Ba(M(XK)) and Ba(XK), we have
that sets of projections in Ba(M(XK)), Ba(X ) and Ba(XK) are successively
in a bijective relation by functions acting as restrictions. Now let us take the
advantage of the fact that K is an essential ideal isomorphic to the algebra of
compact operators on a Hilbert space. By applying Proposition 4.22 to the
ideal submodule XK we get that Ba(XK) is (weakly) generated by projections
in Ba(XK). The fact that Ba(XK) and Ba(M(XK)) are isomorphic implies
that Ba(M(XK)) is generated by projections in Ba(M(XK)).
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Because X is an invariant module for all projections in Ba(M(XK)) it is
also invariant module for all operators in Ba(M(XK)), i.e. for every operator

T ∈ Ba(M(XK)) its restriction T̂ = T |X : X → X is a bounded operator, and

so is a restriction of the operator T ∗ ∈ Ba(M(XK)), T̂ ∗ = T ∗|X : X → X .

Clearly, (T̂ )∗ = T̂ ∗ implies T̂ ∈ Ba(X ), so we have proved that the function

γ is surjective and γ−1(T ) = T̂ , ∀T ∈ Ba(M(XK)). Now from β = α ◦ γ we
have (iv).

Proof of Theorem 2.5. [(i) ⇔ (ii) ⇔ (iii)] If (i) holds true, i.e. ev-
ery relatively strictly closed submodule F in X is orthogonally complemented
in X , then obviously F ⊕ F⊥X is relatively strictly dense in X . Therefore,
by Theorem 2.1 (iii) the essential ideal I is isomorphic to some algebra of
compact operators on a Hilbert space of the form (4.2) and the ideal submod-
ule XI is of the form (4.6). Moreover, because of Theorem 2.3 (iv) and [6,
Theorem 2.3] C∗-algebrasBa(M(XI)) and Ba(X ) are isomorphic and the iso-
morphism from Ba(M(XI)) onto Ba(X ) acts as restriction. In other words,
the mapping β in Theorem 4.28 is an isometry and it follows that A is a hered-
itary C∗-subalgebra of M(I) and X = M(XI)A is the associated hereditary
A-module of M(XI), i.e. (ii) holds true.

If (ii) holds true then from Theorem 2.1 (v) and Proposition 4.10 we have
the existence of ψ-isomorphism of modules Ψ such that ψ(I) = K = C0-⊕j∈J

K(Hj), ψ(M(I)) = M(K) = C∞- ⊕j∈J B(Hj , Gj), ψ(A) = A = (Aj)j∈J

as in (2.1), and the associated ideal submodule Ψ(X ) = X = (Xj)j∈J as
in (2.2). Then every Aj is a hereditary C∗-subalgebra of B(Hj) and Xj =
B(Hj , Gj)Aj , j ∈ J . Because AM(K)A = ψ(AM(I)A) = ψ(A) = A we
have that A is a hereditary C∗-subalgebra of M(K). Also we have X =
Ψ(X ) = Ψ(M(XI)A) =M(XK)A and (iii) holds true.

Now suppose that (iii) holds true. Then the ψ−1-isomorphism of modules
Ψ−1 : M(XK) → M(XI), where Ψ is as in the previous part of the proof,
implies that A is a hereditary C∗-subalgebra of M(I) and X =M(XI)A is a
hereditary module of M(XI) with respect to A, i.e. (ii) is true.

Let (ii) holds true and take any relatively strictly closed submodule Y ⊆
X . By Proposition 4.14 every such submodule is of the form Y = PM(XI) ∩
X , where P = (Pj)j∈J is a projection in M(XI). Because X = M(XI)A
is obviously invariant for all operators in Ba(M(XI)) and particularly for
the projection P , by Proposition 4.13 it follows that the submodule Y is
complemented in X .

Proof of Proposition 2.8. Let X =M(XK)A with A ∈ haK(M(K)).
Then every relatively strictly closed submodule Y is complemented by The-
orem 2.5, so it is, by Proposition 4.13, of the form Y = pX , where p is a
projection in Ba(M(XK)).
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Let us show first that M(Y) = pM(X ). It is well known that the M(A)-
module M(X ) is isomorphic to the Ba(A)-module Ba(A,X ), which consists
of all functions f : A → X acting as f(a) = xa, ∀a ∈ A, for some x ∈ M(X ).
Now, any function g : A → Y which acts as g(a) = ya, ∀a ∈ A, for some
y = px, where x ∈ M(X ), is of the form g = pf , for some f ∈ Ba(A,X ).
Hence, the mapping g 7→ pf is obviously an isomorphism of Hilbert M(K)-
modules M(Y) and pM(X ). Further, we have M(YK)A = M(pXK)A =
pM(XK)A = pX = Y, so Proposition 4.25 implies that Y is (not necessarily
full) Hilbert A-module, hence 〈Y|Y〉 is an ideal in A. Because 〈Y|Y〉 is also a
hereditary subalgebra of A, it is a hereditary subalgebra of M(K), so Y is a
hereditary module of M(YK).

Also, for all j ∈ J closed ideals in M(Kj) form a chain between Kj ≃
K(Hj) and M(Kj) ≃ B(Hj) (see [10, Corollary 6.2] or [8, Theorem 3.3]).
Then all norm-closed ideals in a hereditary subalgebra also form an order-
complete net between Kj and Aj (see [12, Theorem 3.2.7.]). Therefore, we
have that N = 〈Yj |Yj〉 and M = 〈Y⊥

j |Y⊥
j 〉 are ideals in Aj and suppose that

N ⊆ M. Then N+M ⊆ M ⊆ N+M. Also, for any x ∈ X we have x = y⊕z
for some y ∈ Yj and z ∈ Y⊥

j , i.e. 〈x|x〉 = 〈y|y〉+ 〈z|z〉 ∈ N +M = M, so we
have M = Aj .

Finally, the equivalence 〈Yj |Yj〉j = Ij holds if and only if Yj = YjIj

follows from Proposition 4.25.

4. Auxiliary Results

This section contains most of the results required in the proofs of the
main results in this article. Many of them are expressed more broadly than
is necessary for this purpose and are grouped into eight subsections by topic.

4.1. Strict and relatively strict topology. The following properties of strict
and relatively strict closures are essential in proofs. Claims concerning Hilbert
I-modules XI and its strict completions Hilbert M(I)-module M(XI) are
from [9]. Therefore, we prove only those claims regarding Hilbert A-module
X , where XI ⊆ X ⊆M(XI).

Lemma 4.1. Let A be a C∗-algebra with an essential ideal I, let X be a full
Hilbert A-module and let F ,G ⊆ M(XI) be submodules. Then the following
holds.

(i) cℓ(FI) = cℓ(F)I = cℓst(F)I = (cℓst(F) ∩ X )I, and
(ii) cℓst(cℓ(F)) = cℓst(F) = cℓst(cℓst(F)I) = cℓst(FI).

(iii) If F ⊆ X then cℓst
X
(cℓ(F)) = cℓst

X
(F) = cℓst

X
(cℓst(F)I) = cℓst

X
(FI).

(iv) Equalities cℓ(F)I = cℓ(G)I, cℓst(F) ∩ X = cℓst(G) ∩ X and cℓst(F) =
cℓst(G) are equivalent.

(v) If F⊥G then (cℓ(F)⊕ cℓ(G))I = cℓ(F)I ⊕ cℓ(G)I.

(vi) F ⊆ XI if and only if cℓ(F) = cℓ(F)I.
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(vii) cℓ(F) ∩ XI = cℓ(F)I.
(viii) If F ⊆ XI then cℓst

XI
(F) = cℓst(F) ∩ XI = cℓ(F).

Proof. Claims (i) except for the last equality, (ii), (iv) except for the
second equality, (vi) and (vii) are proved in [9, Lemma 3.1.]. The claim (v)
is proved in [9, Lemma 3.3.].

In order to prove the last equality in (i) we note that second equality in (i)

and (vii) give cℓst(F)I
(i.2)
= cℓ(F)I

(vii)
= cℓ(F) ∩ XI ⊆ cℓst(F) ∩ X ⊆ cℓst(F).

Now, by multiplying the previous inclusion by I and applying (vi) to cℓst(F)I

we have cℓst(F)I
(vi)
= (cℓst(F)I)I

(vii)
= (cℓst(F) ∩ XI)I ⊆ (cℓst(F) ∩ X )I ⊆

cℓst(F)I.
Equalities (iii) follow directly from (ii) intersecting with X .
To prove the remaining equivalences in (iv), we note that the last equality

implies the second equality simply intersecting both sides with X . Also, by
multiplying both sides in the second equality by I and applying (i) we get
the first equality in (iv).

For the proof of (viii) we take any x ∈ cℓst
XI

(F) and there is a net (xλ)λ
in F strictly convergent to x ∈ XI , hence ∀b ∈ I, xb = limλ xλb ∈ cℓ(F).
Now, applying approximate unit (eµ)µ in I we have x = limµ xeµ ∈ cℓ(F),
i.e. cℓst

XI
(F) ⊆ cℓ(F). Opposite inclusion is obvious.

Lemma 4.2. Let A be a C∗-algebra with an essential ideal I and let X be a
full Hilbert A-module. If F ⊆M(XI) is a submodule then F⊥ is strictly closed
and if F ⊆ X then F⊥X is relatively strictly closed in X , hence cℓst(F) ⊆
F⊥⊥ and cℓst

X
(F) ⊆ F⊥X⊥X = F⊥⊥ ∩ X . The following equalities apply.

(i) (FI)⊥ = (cℓ(F)I)⊥ = F⊥ = cℓ(F)
⊥
= (cℓst(F))

⊥

and if F ⊆ X then F⊥ = (cℓst
X
(F))

⊥
.

(ii) (FI)⊥X=(cℓ(F)I)⊥X = F⊥X = cℓ(F)⊥X = (cℓst(F))
⊥X ,

and if F ⊆ X then F⊥X = (cℓst
X
(F))

⊥X .

(iii) (FI)⊥XI = F⊥I = F⊥X I.

Proof. We prove only the claims concerning the relative topology on X
and the orthogonal complementing in X . The rest of claims are proved in [9,
Lemma 3.2.].

Because cℓst
X
(F⊥X ) = cℓst(F⊥X ) ∩ X ⊆ cℓst(F⊥) ∩ X = F⊥ ∩ X = F⊥X

we have that F⊥X is relatively strictly closed in X .
Next, by putting F⊥ instead of F in (i) we have (F⊥I)⊥ = F⊥⊥ and

this gives F⊥⊥ ∩ X ⊆ F⊥X⊥X = (F⊥ ∩ X )⊥ ∩ X ⊆ (F⊥ ∩ XI)
⊥ ∩ X =

(F⊥I)⊥ ∩ X = F⊥⊥ ∩ X , i.e. F⊥X⊥X = F⊥⊥ ∩ X = F⊥⊥X .
Claim (ii) follows from (i) intersecting with X .
For the proof of the last equality in (iii) we have F⊥I ⊆ F⊥ ∩ XI =

F⊥XI = F⊥XI I ⊆ F⊥X I ⊆ F⊥I.
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Remark 4.3. It is clear from Lemma 4.2 that every orthogonally closed
submodule in M(XI) is strictly closed and that every orthogonally closed
submodule in X is relatively strictly closed.

Remark 4.4. If a submodule F ⊕ F⊥X is relatively strictly closed in X
then F is relatively strictly closed in X . Namely if the net (xλ)λ in F ⊆
F ⊕F⊥X strictly converges to some x0 ∈ X then x0 ∈ F ⊕F⊥X is of the form
x0 = u + v for some u ∈ F and v ∈ F⊥X . But 0 = st-limλ〈xλ|v〉 = 〈x0|v〉 =
〈u|v〉+ 〈v|v〉 = 〈v|v〉 implies x0 = u ∈ F . The opposite claim is not generally
true, as it is shown in Example 2.11.

4.2. Relative strict topology and complementing. The first results are on
the characterization of orthogonal closedness and orthogonal complementing
property for single submodules of the full Hilbert A-module with an essential
ideal, using the relative strict topology on this module.

Theorem 4.5. Let A be a C∗-algebra with an essential ideal I and X a
full Hilbert A-module.

A submodule F ⊆ X is orthogonally closed in X if and only if F is
relatively strictly closed in X and FI is orthogonally closed in XI .

A submodule F ⊆ X is orthogonally complemented in X if and only if
F⊕F⊥X is relatively strictly closed in X and FI is orthogonally complemented
in XI .

Proof. Note that Lemma 4.2 (ii), (iii) implies

(FI)⊥XI
⊥XI = (F⊥X I)⊥XI = (F⊥X I)⊥X I = F⊥X⊥X I.

For the first assertion, suppose that the submodule F is orthogonally
closed in X , therefore, it is relatively strictly closed in X . Then FI =

F⊥X⊥X I = (FI)⊥XI
⊥XI , i.e. FI is orthogonally closed in XI .

Conversely, if F is relatively strictly closed in X and if FI is orthogonally

closed in XI , we have FI = (FI)⊥XI
⊥XI = F⊥X⊥X I, and by Lemma 4.1(iv)

we conclude that F is orthogonally closed in X .
For the second claim, suppose that the submodule F is orthogonally

complemented in X . Then [9, Theorem 2] implies that F ⊕ F⊥X is or-
thogonally closed in X , hence it is relatively strictly closed in X and from
Remark 4.4 we have that F is relatively strictly closed in X . Also, we have

FI ⊕ (FI)⊥XI = (F ⊕ F⊥X )I = XI = XI .
If F ⊕ F⊥X is relatively strictly closed in X and FI is complemented in

XI then by [9, Theorem 2] we have FI⊕(FI)⊥XI = (FI ⊕ (FI)⊥XI )
⊥XI

⊥XI

and (F ⊕ F⊥X )I = (F ⊕ F⊥X )
⊥X⊥X I. Because F ⊕ F⊥X is relatively

strictly closed in X , applying Lemma 4.1 (iv) we conclude that F ⊕ F⊥X =

(F ⊕ F⊥X )
⊥X⊥X

, and [9, Theorem 2] gives that F is orthogonally comple-
mented in X .
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In the special case where I is isomorphic to some C∗-algebra of compact
operators on a Hilbert space, we have the following characterization.

Corollary 4.6. Let A be a C∗-algebra with an essential ideal K isomor-
phic to some C∗-algebra of compact operators on a Hilbert space and let X be
a full Hilbert A-module.

Submodule F ⊆ X is orthogonally closed in X if and only if F is relatively
strictly closed in X .

Submodule F ⊆ X is orthogonally complemented in X if and only if F ⊕
F⊥X is relatively strictly closed in X .

Proof. The first corollary assertion follows from the first assertion of
Theorem 4.5, [14, Theorem 1] and the fact that XI is a full Hilbert C∗-
module over C∗-algebra isomorphic to some algebra of compact operators on
a Hilbert space.

For the second claim, suppose F ⊕F⊥X is relatively strictly closed in X .
Then FI is a closed submodule in XI , therefore, it is orthogonally comple-
mented in XI (cf. [11, Theorem 1]). By theorem 4.5, the submodule F is
orthogonally complemented in X .

Conversely, if F is orthogonally complemented in X then from [9, Theo-
rem 2] we have that F ⊕F⊥X is orthogonally closed in X , therefore, it is also
relatively strictly closed in X .

4.3. Strict orthogonal bases.

Definition 4.7. Strict orthogonal bases (SOB) (xλ)λ∈Λ for Hilbert A-
module X is a strict Parseval frame, that is 〈x|x〉 = st-

∑
λ∈Λ〈x|xλ〉〈xλ|x〉,

∀x ∈ X , such that ∀λ, µ ∈ Λ, 〈xλ|xµ〉 = δ
λ,µ
pλ, where ∀λ ∈ Λ, pλ ∈ A is

orthogonal projection with the property pλApλ = Cpλ.

Remark 4.8. Note that if I is an essential ideal in A then for any pro-
jection p ∈ A we have pAp = Cp if and only if pIp = Cp. If pIp = Cp then
Cp = pIp ⊆ pAp = pACp = pApIp ⊆ pIp = Cp gives pAp = Cp. Conversely,
if pAp = Cp then pIp ⊆ pAp = Cp and this implies pIp = Cp. Because I is
essential in A the equality pIp = {0} is possible if and only if p = 0.

The construction of a SOB for a full C∗-Hilbert A-module where A con-
tains an essential ideal isomorphic to the C∗-algebra of compact operators on
a Hilbert space is given in the following theorem.

Theorem 4.9. Each full Hilbert module X over C∗-algebra A with the
essential ideal K isomorphic to some C∗-algebra of compact operators on a
Hilbert space has SOB and all SOBs for X have the same cardinality.

Proof. Ideal submodule XK is a full K-module and from [4, Theorem 2]
we have the existence of orthogonal bases (xλ)λ∈Λ for the Hilbert K-module
XK such that ∀λ, µ ∈ Λ, 〈xλ|xµ〉 = δ

λ,µ
pλ, where ∀λ ∈ Λ, pλ ∈ A is orthogonal
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projection with the property pλKpλ = Cpλ. All such orthogonal bases have
the same cardinality.

We claim that (xλ)λ∈Λ is a SOB for X . For any b ∈ I and x ∈ X
we have xb ∈ XK and the fact that (xλ)λ∈Λ is an orthogonal basis for XK

gives xb =
∑

λ xλ〈xλ|xb〉. Then b∗〈x|x〉b = 〈xb|xb〉 =
∑

λ b
∗〈x|xλ〉〈xλ|x〉b =

b∗(
∑

λ〈x|xλ〉〈xλ|x〉)b. Also from Remark 4.8 we have pλApλ = Cpλ and this
implies that all conditions for SOB in Definition 4.7 are fulfilled, i.e. (xλ)λ∈Λ

is a SOB for X .

4.4. Another characterization of multiplier Hilbert modules. The next re-
sult on the extension of the isomorphism of Hilbert C∗-modules (unitary op-
erators) is from [6, Proposition 1.7] and is often useful.

Proposition 4.10. Let Ai (i = 1, 2) be C∗-algebras and Xi full Hilbert
Ai-modules (i = 1, 2) and let Φ0 : X1 → X2 be a φ0-isomorphism of Hilbert
C∗-modules. Then there exists a φ-isomorphism Φ : M(X1) → M(X2) of
Hilbert C∗-modules M(X1) and M(X2) such that Φ0 = Φ|A1 .

In the sense of the property we prove in the following proposition, for a
full A-module X we say that M(X ) is the maximal Hilbert C∗-module over
unital C∗-algebra containing A as an essential ideal such that X is its ideal
submodule with respect to A. This is analogous to the characterization of
multiplier algebra as the maximal unitization of C∗-algebra.

Proposition 4.11. Let X be a full A-module and let M(X ) be its mul-
tiplier (not necessarily full) M(A)-module. For any injective j-morphism
of Hilbert C∗-modules J : X → Y, where (not necessarily full) B-module
Y is such that j(A) is an essential ideal of a unital C∗-algebra B and
Y j(A) ⊆ J(X ), there exists an injective φ-morphism of Hilbert C∗-modules
Φ : Y →M(X ).

Proof. Let us take any y ∈ J(X ) and put Φ0(y) = J−1(y). Then we
have well defined φ0-isomorphism of Hilbert C∗-modules Φ0 : J(X ) → X ,
where φ0 = j−1 : j(A) → B and J(X ) = Y j(A) is an ideal submodule of Y
with respect to the essential ideal j(A) of B.

Applying Proposition 4.10 we extend the φ0-isomorphism Φ0 by strict
continuity to a φM -isomorphism ΦM :M(J(X )) →M(X ) of Hilbert modules,
where φM :M(j(A)) → M(A) is the associated isomorphism of C∗-algebras.
Because J(X ) = Y j(A) ⊆ Y ⊆ M(J(X )) it follows that Φ = ΦM |Y is the
required injective morphism.

The multiplier module of the full Hilbert C∗-module over some C∗-algebra
is not necessarily a full module over the corresponding multiplier C∗-algebra,
as we show in the following example.

Example 4.12. Let H and G be Hilbert spaces. Then K(H,G) is a full
right K(H)-module with inner product 〈f |g〉 = f∗g, f, g ∈ K(H,G). The set
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B(H,G) is a maximal right B(H)-module such that K(H) is an essential ideal
in B(H) and K(H,G) = B(H,G)K(H), hence M(K(H,G)) = B(H,G).

In case when H is infinite dimensional and G is finite dimensional space
we have B(H,G) = K(H,G) and K(H) $ B(H), so B(H,G) is not a full
B(H)-module.

4.5. Projections, relative closures and complementing. The following re-
sult is a simple characterization of the orthogonal complementing property
for submodules in X using (orthogonal) projections in Ba(M(XI)).

Proposition 4.13. Let A be a C∗-algebra with an essential ideal I, X a
full Hilbert A-module and G a submodule in X .

The submodule G ⊆ X is orthogonally complemented in X if and only if
there exists a projection P ∈ Ba(M(XI)) such that G = PM(XI) ∩ X and X
is an invariant module for P .

Then G = PX = P̂X and G⊥X = (I − P )X = (I − P̂ )X , where P̂ = P |X
is a projection in Ba(X ).

Proof. Let G be a submodule in X connected with the projection P ∈
Ba(M(XI)) in a way that G = PM(XI) ∩ X and PX ⊆ X . Then X =
PX ⊕ (I − P )X and X is also an invariant module for I − P . To show
that G = PX we have PX ⊆ PM(XI) ∩ X = G, and by the construction
G = PG ⊆ PX . Clearly, we also have G⊥X = (I − P )X .

Now, let G be orthogonally complemented, i.e. G ⊕ G⊥X = X . Then G
is relatively strictly closed in X and there exists the unique projection P̂ ∈
M(X ) such that G = R(P̂ ). It can be strictly extended to the projection P ∈

Ba(M(XI)) such that R(P ) = cℓst(G) and P̂ = P |X . Because of cℓst(G) =
PM(XI) we have G = cℓst

X
(G) = cℓst(G)∩X = PM(XI)∩X , i.e. G is connected

with the projection P and PX = P̂X = G ⊆ X .

In the special case, when A is C∗-algebra with an essential ideal isomor-
phic to some C∗-algebra of compact operators on a Hilbert space, we have
a simple characterization of the relative closedness for submodules in X by
projections from Ba(M(X I).

Proposition 4.14. Let A be a C∗-algebra with an essential ideal I iso-
morphic to some C∗-algebra of compact operators on a Hilbert space, let X be
a full Hilbert A-module and G a submodule in X .

The submodule G ⊆ X is relatively strictly closed in X if and only if there
exists projection P ∈ Ba(M(XI)) such that G = PM(XI) ∩ X .

Proof. Let G ⊆ X be relatively strictly closed in X , i.e. G = cℓst(G)∩X .
From [9, Theorem 3.4] we have that cℓst(G) is orthogonally complemented
in M(XI), so there exists projection P ∈ Ba(M(XI)) such that cℓst(G) =
PM(XI). Consequently, it follows G = cℓst(G) ∩ X = PM(XI) ∩ X .
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Vice versa, let G = PM(XI) ∩X where P is a projection in Ba(M(XI)).
Then PM(XI) is strictly closed submodule inM(XI), hence G = PM(XI)∩ X
is relatively strictly closed in X .

4.6. Outer direct sums and module isomorphisms.

Lemma 4.15. For any ideal C of C∞ containing C0 and for each family
B = (Bj , ‖ · ‖j)j∈J of Banach spaces, C∗-algebras or Hilbert C∗-modules the
set C-⊕j∈J Bj defined by (1.1) is a Banach space, C∗-algebra or Hilbert C∗-
module, respectively.

If (B, ‖ · ‖∞) is a Banach space then C0-⊕j∈J Bj ⊆ B ⊆ C∞-⊕j∈J Bj.

Proof. Let λ ∈ C and x = (xj)j , y = (yj)j ∈ C- ⊕j∈J Bj. Then we
have (‖λxj + yj‖j)j∈J ≤ |λ|(‖xj‖j)j∈J + (‖yj‖j)j∈J ∈ C and therefore,
λx + y ∈ C- ⊕j∈J Bj . In the case of C∗-algebras, because of inequality
(‖xjyj‖j)j∈J ≤ (‖xj‖j)j∈J (‖yj‖j)j∈J ∈ C and (‖x∗j‖j)j∈J = (‖xj‖j)j∈J ∈ C
we have xy, x∗ ∈ C- ⊕j∈J Bj . Further, let B = (Bj , ‖ · ‖j)j∈J and A =
(Aj , ‖ · ‖j)j∈J be families where Bj are Hilbert Aj -modules, j ∈ J . Take
any a ∈ C- ⊕j∈J Aj and x ∈ C- ⊕j∈J Bj and we have (‖xjaj‖j)j∈J ≤
(‖xj‖j)j∈J (‖aj‖j)j∈J ∈ C, i.e. xa ∈ C-⊕j∈J Bj .

Now, let us prove that C-⊕j∈J Bj is a closed set in C∞-⊕j∈J Bj . Take any

sequence (x(m))m∈N in C-⊕j∈J Bj convergent to x = (xj)j∈J ∈ C∞-⊕j∈J B.
Then for every ε > 0 there exists mε ∈ N such that ‖x(m) − x‖∞ < ε for
all m ≥ mε. Now, take any x(m), with m ≥ mε. Then we have ‖xj‖j ≤

‖xj − x
(m)
j ‖j + ‖x

(m)
j ‖j ≤ ‖x − x(m)‖∞ + ‖x

(m)
j ‖j < ε + ‖x

(m)
j ‖j , for all

j ∈ J , i.e. (‖xj‖j)j∈J ≤ ε · (1)j∈J + (‖x
(m)
j ‖j)j∈J . From there, because of

(‖x
(m)
j ‖j)j∈J ∈ C and the fact that C∞ is a unital C∗-algebra it follows by

[12, 3.2.6.Theorem] that x ∈ C-⊕j∈J Bj.
To prove the last statement, we note that all elements in C0- ⊕j∈J Bj

that have only one component different from 0 are in B, and therefore, those
elements that have only finitely many components different from 0 are in
B. Now, take any x = (xj)j∈J ∈ C0- ⊕j∈J B and let for any n ∈ N be

x(n) = (x
(n)
j )j∈J ∈ C0- ⊕j∈J B a member with components x

(n)
j = xj if

‖xj‖j ≥
1
n
(there are only finitely many of them), and other components are

0. Then ∀n ∈ N, we have x(n) ∈ B and ‖x − x(n)‖∞ ≤ 1
n
, i.e. x = limn x

(n),
hence x ∈ B. The right inclusion is clear.

Proposition 4.16. Let (Aj)j∈J be a family of C∗-algebras and let
(Xj)j∈J be a family of full Hilbert Aj-modules, j ∈ J . If A = C0- ⊕j∈J Aj

is a C∗-algebra and X = C0- ⊕j∈J Xj is a Hilbert A-module, then M(X ) =
C∞-⊕j∈J M(Xj) is a strictly complete Hilbert M(A)-module.
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Proof. We construct an isomorphism (unitary operator)Φ : Ba(A,X ) →
M(X ) and that will mean that M(X ) is strictly complete (cf. [6, Proposi-
tion 2.10]).

First we show that X is an ideal submodule in M(X ). Let us take any
x = (xj)j ∈M(X ) and b = (bj)j ∈ A. Clearly, the component-wise product of
bounded function and the function vanishing at infinity is a function vanishing
at infinity, so xb = (xjbj)j ∈ X , i.e. M(X )A ⊆ X , and therefore, we have
M(X )A = X .

In order to construct a proper unitary operator, we take any T ∈
Ba(A,X ). It acts on A as T (a) = xa for the unique x ∈ M(X ) (cf. the
proof of Proposition 2.10 in [6]). Adjoint operator T ∗ ∈ Ba(X ,A) acts as
T ∗(y) = 〈x|y〉, ∀y ∈ X , namely 〈y|T (a)〉X = 〈y|xa〉X = 〈y|x〉X a = 〈x|y〉∗X a =
(T ∗(y))∗a = 〈T ∗(y)|a〉A.

Now we define Φ(T ) = x = (xj)j . We have that x = (xj)j is bounded,

limj∈J xjaj = 0 and supj∈J ‖xj‖j = ‖x‖
[5]
= sup‖a‖≤1 ‖xa‖ = ‖T ‖ (cf. [5,

Proposition 1.11.(1)]).
Let us show that Φ preserves the inner product, i.e. 〈Φ(T )|Φ(T )〉 = 〈T |T 〉

for all T ∈ Ba(A,X ). Namely for all a ∈ A, 〈T |T 〉(a) = T ∗T (a) = T ∗(xa) =
〈x|xa〉 = 〈x|x〉a = 〈Φ(T )|Φ(T )〉a. So Φ is injective. Operator Φ is also
surjective because for any x ∈ M(X ) the operator defined as T (a) = xa,
∀a ∈ A is in Ba(A,X ) and Φ(T ) = x.

The following proposition deals with the outer sums and isomorphisms of
their components.

Proposition 4.17. Let (Xj)j∈J and (Yj)j∈J be families of Hilbert C∗-
modules such that Hilbert C∗-modules Xj and Yj are isomorphic for all j ∈ J .
Then for any ideal C of C∞ containing C0 C

∗-modules XC = C- ⊕j∈J Xj and
YC = C- ⊕j∈J Yj are isomorphic and also Hilbert C∗-modules M(XC0) =
C∞-⊕j∈J M(Xj) and M(YC0) = C∞-⊕j∈J M(Yj) are isomorphic.

Proof. Let us suppose that for all j ∈ J there exists a φj-isomorphism
Φj of Xj and Yj . Obviously, φ-isomorphism Φ, where φ = (φj)j∈J and
Φ = (Φj)j∈J , is an isomorphism of modules XC and YC . Namely because
Φj , j ∈ J , are isometries we have (‖Φj(xj)‖j)j∈J = (‖xj‖j)j∈J , and the
definition of C-⊕ sum implies x ∈ XC if and only if Φ(x) ∈ YC , and the first
claim follows.

For the proof on multiplier Hilbert modules recall that by Proposition 4.10
we are able to extend isomorphism of Hilbert modules Xj and Yj to the isomor-
phism of Hilbert modules M(Xj) and M(Yj). Therefore, Hilbert C

∗-modules
XM,C = C-⊕j∈J M(Xj) and YM,C = C-⊕j∈J M(Xj) are isomorphic. Now from
Proposition 4.16 follows that XM,C∞

=M(XC0) and YM,C∞
=M(YC0).

If C∗-algebra K is isomorphic by isomorphism ψ0 to some C∗-algebra of
compact operators on Hilbert space it is well known (cf. [3, Theorem 1.4.5])
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that there is a family of Hilbert spaces (Hj)j∈J such that

(4.1) ψ0(K) = C0-⊕j∈J K(Hj) = K

i.e. ψ0(K) is C0-direct sum of elementary C∗-algebrasK(Hj) of all compact op-
erators on the Hilbert space Hj , j ∈ J . Let us denote Ki = ⊕j∈J δi,jK(Hj),
i ∈ J (δi,j is the Kronecker symbol) and this is an ideal in K. We define

Kj = ψ−1
0 (Kj), j ∈ J , and from Proposition 4.17 we have

(4.2) K = C0-⊕j∈J Kj .

Proposition 4.16 gives

(4.3) M(K) = C∞-⊕j∈J B(Hj) = B

and

(4.4) M(K) = C∞-⊕j∈J M(Kj) = B.

For the full K-module X with C∗-algebra K as in (4.2) it is proved in [14]
that there is another family of Hilbert spaces (Gj)j∈J and ψ0-isomorphism
Ψ0 such that

(4.5) Ψ0(X ) = C0-⊕j∈J K(Hj , Gj) = X,

and

(4.6) X = C0-⊕j∈J Xj ,

where Xj = Ψ−1
0 (Xj), Xj = ⊕i∈J δi,jK(Hj , Gj), j ∈ J . Submodule

Xj = XKj is full right Hilbert Kj-module and the ideal submodule in X ,
j ∈ J . Moreover, assuming identification of Kj with K(Hj), we prove that it
is possible to identify the Hilbert space Gj with Xjpj , where pj is any minimal
projection in Kj , j ∈ J .

For this purpose, let H be a Hilbert space with the scalar product 〈·, ·〉H
linear in the first argument. We look at K(H) and especially the rank 1
operators; for given η, ξ ∈ H let θη,ξ be operator defined as θη,ξ(ν) = 〈ν, η〉Hξ.
Note that for every operator t ∈ B(H) holds

(4.7) tθη,ξ = θη,tξ and θη,ξt = θt∗η,ξ.

Fix the unit vector ε ∈ H and put p = θε,ε. We know that p is minimal
projection.

Let X be right Hilbert K(H)-module with inner product 〈·, ·〉X linear in
the second argument. Note that X is automatically full. Let G = Xp and
we know (cf. [4, Remark 4]) that G is a Hilbert space with the scalar product
〈·, ·〉G linear in the first argument given by the formula

(4.8) 〈xp, yp〉G = tr (〈yp, xp〉X) = tr (p〈y, x〉Xp) .

Now we note that for any operator t ∈ B(H) it is valid

ptp = θε,εtθε,ε
(4.7)
= θε,εθε,tε

(4.7)
= θε,〈tε,ε〉Hε = 〈tε, ε〉Hp.
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Therefore, we can write (4.8) in the form

(4.9) 〈xp, yp〉G = 〈〈y, x〉Xε, ε〉H .

Lemma 4.18. The mapping L : X → K(H,G) defined by x 7→ L(x),
L(x)(ξ) = xθε,ξ is isometric isomorphism (i.e. unitary operator) of Hilbert
K(H)-modules.

Proof. First we note that K(H,G) is really a Hilbert K(H)-module
with inner product 〈k, l〉K(H,G) = k∗l.

Second, note that θε,ξ = θpε,ξ = θε,ξp which allows us to write the formula
for the operator L(x) in a shape L(x)(ξ) = xθε,ξ = xθε,ξp, whence we see that
L(x) really receives values in the space G. Obviously, L(x) is linear. We will
show that it is also bounded so that we will find its adjoint operator. Namely
we claim it is

(4.10) L(x)∗(yp) = 〈x, y〉X(ε).

Indeed, if we take the arbitrary ξ ∈ H and yp ∈ G we have

〈L(x)(ξ), yp〉G = 〈xθε,ξp, yp〉G
(4.9)
= 〈〈y, xθε,ξ〉Xε, ε〉H

= 〈〈y, x〉Xθε,ξε, ε〉H = 〈〈y, x〉Xξ, ε〉H ,

and also

〈ξ, L(x)∗(yp)〉H = 〈ξ, 〈x, y〉X(ε)〉H = 〈〈y, x〉X(ξ), ε〉H .

So far, we have shown that L is a well-defined (obviously linear) mapping that
receives values in B(H,G). We have argued that L receives values actually in
K(H,G) and we will show this in the next step. Before that, show that L is
a modular mapping, i.e. that

(4.11) L(xk) = L(x)k, ∀x ∈ X, ∀k ∈ K(H).

Let us take arbitrary x ∈ X and k ∈ K(H). Now, for all ξ ∈ H we have

L(xk)(ξ) = xkθε,ξ = xθε,kξ ,

while on the other hand

L(x)k(ξ) = L(x)(kξ) = xθε,kξ.

Now, let us take any x ∈ X . Using Cohen-Hewitt theorem on factorization
(cf. [13, Proposition 2.31]) we can write x = vk for some v ∈ X and k ∈ B(H).

Now we have L(x) = L(vk)
(4.11)
= L(v)k ∈ K(H,G). Thus, we have shown

that L : X → K(H,G) is a modular operator that really takes values in
K(H,G).

Now let us show that L preserves inner products, i.e.

(4.12) 〈L(x), L(y)〉K(H,G) = 〈x, y〉X , ∀x, y ∈ X.
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Let us take arbitrary x, y ∈ X and ξ ∈ H . Now, we have

〈L(x), L(y)〉K(H,G)(ξ) = L(x)∗(L(y)(ξ)) = (x)∗(yθε,ξp)

(4.10)
= 〈x, yθε,ξ〉X(ε) = 〈x, y〉Xθε,ξ(ε) = 〈x, y〉X(ξ).

This proves (4.12). It remains to show that L is an injection. Because L is
isometry, so it has a closed image, it is sufficient to prove that in the image of
L is every elementary operator Θξ,yp ∈ K(H,G) where for given ξ ∈ H and
yp ∈ G the operator Θξ,yp is defined by Θξ,yp(η) = 〈η, ξ〉Hyp.

Let’s choose arbitrary ξ ∈ H and yp ∈ G. Now for all η ∈ H we have
L(yθξ,ε)(η) = yθξ,εθε,η = yθε,θξ,ε(η) = yθε,〈η,ξ〉Xε = 〈η, ξ〉Xyθε,ε = 〈η, ξ〉Xyp =
Θξ,yp(η) which proves L(yθξ,ε) = Θξ,yp.

Proposition 4.19. Let K = C0-⊕j∈J Kj where for all j ∈ J C∗-algebra
Kj is isomorphic to C∗-algebra of all compact operators on a Hilbert space
and let X be a full Hilbert K-module. Then C∗-algebra K(X ) of all ”compact”
operators on X is of the form

(4.13) K(X ) = C0-⊕j∈J K(Xj),

and C∗-algebra Ba(X ) of all adjointable operators on X is of the form

(4.14) Ba(X ) = C∞- ⊕j∈J Ba(Xj)

and Ba(X ) =M(K(X )).

Proof. For the proof of (4.13), we take any elementary ”compact” op-
erator Θx,y ∈ K(M(X )) with x = (xj)j , y = (yj)j ∈ M(X ). Then for all
z = (zj)j ∈ M(X ) we have Θx,yz = x〈y|z〉 = (xj〈yj |zj〉)j∈J = (Θxj ,yj

zj)j∈J

and from that follows ‖Θxj,yj
zj‖2j = ‖〈zj|yj〉〈xj |xj〉〈yj |zj〉‖j . Therefore,

‖Θxj,xj
‖j = ‖xj‖2j , j ∈ J , so we have limj∈J ‖Θxj,xj

‖j = 0 if and only if

limj∈J ‖xj‖j = 0, i.e. Θx,x ∈ C0- ⊕j∈J K(Xj) if and only if Θx,x ∈ K(X )
where x ∈ X and X is of the form (4.6). By applying polarization equality

Θx,y = 1
4

∑3
k=0 i

kΘx+iky,x+iky the foregoing conclusions apply to all elemen-
tary ”compact” operators Θx,y, and we have (4.13).

The fact that each ideal submodule Xj , j ∈ J is an invariant submodule
for every bounded K-linear operator on X and the fact that all bounded mod-
ular operators on C∗-Hilbert modules over C∗-algebras of compact operators
are adjointable gives (4.14).

For all j ∈ J C∗-algebra Ba(Xj) is isomorphic to the C∗-algebra
B(Gj) and C∗-algebra K(Xj) is isomorphic to C∗-algebra K(Gj) where
Gj = Xjpj , for some minimal projection pj ∈ P(Kj), is a Hilbert space
from Lemma 4.18, and the isomorphism acts as restriction and preserves the
subalgebra of all compact operators (cf. [4, Theorem 2]). This implies that
M(K(Xj)) = Ba(Xj) for all j ∈ J . Now the last claim follows from (4.14)
and Proposition 4.16.
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4.7. Outer direct sums and von Neumann algebras. For the proof of the
fact that C∞-sum of von Neumann algebras is a von Neumann algebra we are
unable to provide a reference. Here, for the sake of completeness, we prove a
slightly more general statement for the commutator of direct sum of the family
of (possibly non-unital) ∗-algebras from which this immediately follows. First
we list a few facts that are simple tasks.

For a nonempty subset A ⊆ B(H), whereH is Hilbert space, the equation⋂
a∈A N (a)⊕ cℓ(span(

⋃
a∈A R(a∗))) = H holds true. This follows easily from

the equalities (
⋃

a∈A R(a∗))⊥ =
⋂

a∈A N (a) and S⊥⊥ = cℓ(span(S)) for any
nonempty S ⊆ H .

Further, for a nonempty subset A ⊆ B(H) acting non-degenerately on
H , i.e. for h ∈ H , Ah = 0 implies h = 0, we have

⋂
a∈A N (a) = {0}, and

span(
⋃

a∈A R(a∗)) is dense in H . In this case, for any t ∈ B(H,G) such that
ta∗ = 0 for all a ∈ A follows t = 0. Namely for any h ∈ H we have a sequence
(hn)n in span(

⋃
a∈A R(a∗)) such that h = limn hn. For all n ∈ N we have

thn = 0, so th = th− limn thn = 0, hence t = 0.

Lemma 4.20. If A = (Aj)j∈J is a family of ∗-algebras such that Aj ⊆
B(Hj) are non-degenerately acting on Hj, j ∈ J , where (Hj)j∈J is a family
of Hilbert spaces, then A′ = C∞-⊕j∈J A′

j is its commutator algebra.

Proof. Let H = ℓ2- ⊕j∈J Hj be a Hilbert space and ∗-algebra A can
be identified with a subalgebra of B(H) such that for every a ∈ A invariant
subspaces of a are Hj , j ∈ J . If an operator t = (ti,j) ∈ B(H) is from the
commutator of A, then for any a = (δi,jaj) (δi,j is the Kronecker symbol) we
have ti,jaj = 0 and ajtj,i = 0 for all i, j ∈ J , i 6= j, and ajtj,j = tj,jaj for
all j ∈ J . This implies ti,j = 0 for all i, j ∈ J , i 6= j, i.e. A′ ⊆ C∞- ⊕j∈J A′

j .

The opposite inclusion is obvious, so we have A′ = C∞-⊕j∈J A′
j .

Corollary 4.21. If (Aj)j∈J is a family of von Neumann algebras, then
A = C∞-⊕j∈J Aj is a von Neumann algebra.

Proof. It follows from Lemma 4.20 that A′′ = A.

Proposition 4.22. Let K = C0-⊕j∈J Kj where for all j ∈ J C∗-algebra
Kj is isomorphic to C∗-algebra of all compact operators on a Hilbert space and
let X be a full Hilbert K-module. Then C∗-algebras Ba(X ) from (4.14) and
B = C∞- ⊕j∈J B(Gj) are isomorphic, where (Gj)j∈J is a family of Hilbert
spaces, Gj = Xjpj and pj ∈ Kj is a minimal projection, j ∈ J . The C∗-
algebra B is generated by its projections, so Ba(X ) is generated by projections
in Ba(X ).

Proof. Decomposition (4.13) from Proposition 4.19 and Proposition 4.17
imply that Ba(X ) is isomorphic to B.

For all j ∈ J , C∗-algebra B(Gj) is von Neumann algebra and hence it
is generated by projections in B(Gj). It follows from Corollary 4.21 that
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C∗-algebra B is von Neumann algebra and consequently it is generated by
projections in B. Now the isomorphism of C∗-algebras Ba(X ) and B implies
that Ba(X ) is generated by projections in Ba(X ).

4.8. Hereditary C∗-subalgebras and hereditary C∗-modules.

Remark 4.23. It is well known that every C∗-algebra A ∈ ha(B) is of

the form A = L∗ ∩ L, where L = {a ∈ B : |a| = (a∗a)
1
2 ∈ A} is a unique

closed left ideal of B with this property (cf. [12, 3.2.1.Theorem]). Obviously,
A ⊆ L∗ and A ⊆ L, as well as L∗L ⊆ L∗ and L∗L ⊆ L. By applying Cohen-
Hewitt theorem on factorization this implies A = AA ⊆ L∗L ⊆ L∗ ∩ L = A,
i.e. A = L∗L.

Remark 4.24. If A is a hereditary C∗-subalgebra of C∗-algebra B, by ap-
plying Cohen-Hewitt theorem on factorization we have A ⊆ AAA ⊆ ABA ⊆
A, hence ABA = A.

Also, if A is a hereditary C∗-subalgebra of C∗-algebra B and B is a hered-
itary C∗-subalgebra of C∗-algebra C, then A is a hereditary subalgebra of C.
Namely ACA=AACAA ⊆ ABCBA=ABA=A.

Proposition 4.25. Let X be a Hilbert B-module, A ∈ ha(B) and let
XA = cℓ(span(XA)), the closed linear span of the action of A on X . Then
XA = XA ∈ hm(X ) is a hereditary A-module of X and

XA = {x ∈ X : 〈x|x〉 ∈ A} = {x ∈ X : |〈y|x〉| ∈ A, ∀y ∈ X}.

If X is a full B-module, then XA is a full A-module and it is a submodule of
X if and only if A is an ideal in B.

Proof. From the definition of XA and the fact that A ∈ ha(B) it follows
that 〈XA|XA〉 is generated by elements of the form ai〈xi|xj〉aj ∈ ABA =
A, so XA is a Hilbert C∗-module over A. For all other statements except
XA = {x ∈ X : |〈y|x〉| ∈ A, ∀y ∈ X} the proofs for ideal submodules from [5,
Proposition 1.2, Proposition 1.3] are valid for hereditary modules.

To prove the above equality it is sufficient to prove that for x ∈ X such
that 〈x|x〉 ∈ A we have |〈y|x〉| ∈ A, ∀y ∈ X , because the opposite inclusion
is obviously true. For this purpose we use the fact that for each x ∈ X
there exists z ∈ X such that x = z〈z|z〉 (cf. [13, Proposition 2.31]). Then
〈x|x〉 = 〈z|z〉3 ∈ A and therefore, a = 〈z|z〉 ∈ A. Now for any y ∈ X , because
b = 〈z|y〉〈y|z〉 ∈ B, we have |〈y|x〉|2 = 〈x|y〉〈y|x〉 = 〈z|z〉(〈z|y〉〈y|z〉)〈z|z〉 =
aba ∈ A. Then |〈y|x〉| ∈ A implies the equality.

The last statement follows from the fact that in the case where XA is a
submodule of X , i.e. it is a B-module, we have that 〈XA|XA〉 = A is an ideal
in B and vice versa.
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Recall from [6, Theorem 2.3] that for a full Hilbert A-module X with an
essential ideal I the mapping

(4.15) α : Ba(M(XI)) → Ba(XI), α(T ) = T |XI
,

is an isomorphism of C∗-algebras. Also

(4.16) β : Ba(X ) → Ba(XI), β(T ) = T |XI

is an injective morphism of C∗-algebras (cf. [5, Theorem 1.12]), therefore,
γ = α−1 ◦ β : Ba(X ) → Ba(M(XI)) is an injective morphism. Operators in
Ba(M(XI)) and Ba(X ) are extensions by the strict continuity of operators
in Ba(XI) (cf. [6, Remark 2.4]).

Lemma 4.26. Let A be a C∗-algebra with an essential ideal I, X is a
full Hilbert A-module. If α and β are from (4.15) and (4.16), respectively,
then for γ = α−1 ◦ β we have its range R(γ) = {T ∈ Ba(M(XI)) : TX ⊆
X ∧ T ∗X ⊆ X}.

Proof. Let us show first that R(γ) ⊆ {T ∈ Ba(M(XI)) : TX ⊆ X ∧

T ∗X ⊆ X}. Namely, if T ∈ R(γ) then T ∗ ∈ R(γ) and there exists T̂ ∈ Ba(X )

such that T = γ(T̂ ) and T ∗ = γ(T̂ ∗). Therefore, we have α(T ) = β(T̂ ) and

α(T ∗) = β(T̂ ∗), i.e. T |XI
= T̂ |XI

= T0 ∈ Ba(XI). Now because Tx =

st-limλ T0xeλ and T ∗x = st-limλ T
∗
0 xeλ for all x ∈M(XI) it follows T |X = T̂

and T ∗|X = T̂ ∗, so TX ⊆ X and T ∗X ⊆ X .

If TX ⊆ X and T ∗X ⊆ X then T̂ = T |X ∈ Ba(X ). This implies T |XI
=

T̂ |XI
, i.e. α(T ) = β(T̂ ) or T = α−1 ◦ β(T̂ ), hence T ∈ R(γ).

Lemma 4.27. Let A, X , α, β be as in Lemma 4.26 and let F ⊆ X
be a relatively strictly closed submodule. If β is an isomorphism then F is
complemented in X if and only if FI is complemented in XI.

Proof. Let F be complemented in X , i.e. F ⊕ F⊥X = X . Multiplying

by I and applying Lemma 4.1(v), Lemma 4.2(iii) gives FI ⊕ (FI)⊥XI = XI .
Now let FI be complemented in XI . Then there exists a projection

P0 ∈ Ba(XI) such that FI = P0XI . We have cℓst(FI) = cℓst(F) and
Pd = α−1(P0) is a projection such that PdM(XI) = cℓst(FI) = cℓst(F) so
PdM(XI)∩X = cℓst

X
(F) = F . Because β is an isomorphism X is an invariant

module for all operators in B(M(XI)), and particularly for Pd. Now it follows
from Proposition 4.13 that F is complemented in X .

The following theorem gives the characterization of hereditary C∗-
algebras and the corresponding hereditary Hilbert modules via restriction
as the morphism of C∗-algebras of all adjointable operators on the Hilbert
C∗-module and its ideal submodule.

Theorem 4.28. Let A be a C∗-algebra with an essential ideal I, X is
a full Hilbert A-module and let β : Ba(X ) → Ba(XI) acts as restriction.
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Mapping β is an isomorphism if and only if A is a hereditary subalgebra of
M(I) and X is a hereditary A-module of M(XI).

Proof. If A is a hereditary subalgebra of M(I) and X is a hereditary
A-module of M(XI), i.e. X =M(XI)A, then TdX = TdM(XI)A ⊆M(XI)A
for all Td ∈ Ba(M(XI)). It follows from Lemma 4.26 that R(α−1 ◦ β) =
Ba(M(XI)) so γ = α−1 ◦ β is an isomorphism and therefore, β is also an
isomorphism.

Conversely, let β be an isomorphism of C∗-algebras. It follows from
Lemma 4.26 that X is an invariant module for all operators in Ba(M(XI)).
When we apply this fact to an elementary ”compact” operator Θx,y ∈
K(M(XI)) for any x, y ∈ M(XI) and z ∈ X we have Θx,yz = x〈y|z〉 ∈ X .
In particular, for all x ∈ M(XI) and z, w ∈ X we have x〈z|w〉 ∈ X . Be-
cause X and A = 〈X |X〉 are closed we have M(XI)A ⊆ X . Applying the
Cohen-Hewitt theorem of factorization (see [13, Proposition 2.31]) it follows
X = XA ⊆M(XI)A ⊆ X , i.e. M(XI)A = X . From there it immediately fol-
lows ABA ⊆ A, where B = 〈M(XI)|M(XI)〉 is an ideal in M(I) and we have
ABA = A as above. Then A is a hereditary C∗-subalgebra of C∗-algebra B
(see [12, Theorem 3.2.2]), and because B is an ideal in M(I) it follows that A
is a hereditary C∗-subalgebra of M(I). Now, from Proposition 4.25 we have
that M(XI)A is a hereditary Hilbert A-module.

Corollary 4.29. Let A be a C∗-algebra with an essential ideal I. Then
A is a hereditary subalgebra of M(I) if and only if for any C∗-Hilbert module
of the form X = M(XI)A the mapping β : Ba(X ) → Ba(XI) which acts as
restriction is an isomorphism.

Proof. IfA is a C∗-algebra with an essential ideal I which is a hereditary
subalgebra of M(I) then any C∗-Hilbert module of the form X =M(XI)A is
an A-module, namely 〈X |X〉 = A〈M(XI)|M(XI)〉A ⊆ AM(I)A ⊆ A. Hence
X ∈ hmXI

(M(XI)) and by Theorem 4.28 β is an isomorphism. The opposite
conclusion follows directly from Theorem 4.28.

Denote by sa(B) the set of all C∗-subalgebras of some C∗-algebra B, and
for a non-empty set S ⊂ B by saS(B) denote the set of all C∗-algebras from
sa(B) containing S. We also denote by sm(X ) the set of all C∗-submodules
of some Hilbert C∗-module X , and for a non-empty set S ⊂ X by smS(X )
denote the set of all submodules from sm(X ) that contain S.

For the function f : D → E we denote with f [A] the image of A ⊆ D and
with f−1[B] the inverse image of B ⊆ E. It is known that A ⊆ f−1[f [A]] and
B ⊇ f [f−1[B]] are always valid. If f is a surjection then B = f [f−1[B]] and
if it is injection then A = f−1[f [A]].

Proposition 4.30. Let B be a C∗-algebra with an essential ideal I. The
function ω : saI(B) → sa(B/I) defined by ω(A) = π[A] for all A ∈ saI(B) is
a bijection, and so is its restriction ωh : haI(B) → ha(B/I).
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Let X be full Hilbert B-module. The function Ω : smXI
(X ) → sa(X/XI)

defined by Ω(Y) = Π[Y] for all Y ∈ smXI
(X ) is a bijection, and so is its

restriction Ωh : hmXI
(X ) → hm(X/XI).

Proof. The morphism π : B → B/I preserves structures of C∗-
subalgebras, hereditary subalgebras and ideals, so the function ω is well de-
fined.

Let us show that for every A ∈ sa(B/I) the inverse image A = π−1[A] ∈
saI(B). For λ ∈ C and ai ∈ A (i = 1, 2), we have π(λa1 + a2) = λπ(a1) +
π(a2) ∈ A, hence λa1+a2 ∈ π−1[A] = A. Also π(a1a2) = π(a1)π(a2) ∈ A and
π(a∗1) = π(a1)

∗ ∈ A, i.e. a1a2, a
∗
1 ∈ A. For the proof of closedness in norm

of the set A we take any sequence (an)n in A, and a = limn an ∈ B. Then
by closedness in norm of the C∗-algebra A we have π(a) = limn π(an) ∈ A,
so a ∈ A. In order to prove that for A ∈ ha(B/I) the C∗-algebra A belongs
to haI(B) we take arbitrary ai ∈ A (i = 1, 2), and c ∈ B. Because A is a
hereditary subalgebra of B/I we have π(a1ca2) = π(a1)π(c)π(a2) ∈ A, so
a1ca2 ∈ A and the C∗-algebra A ∈ haI(B).

For the proof of surjectivity of the function ω we take any C∗-algebra
A ∈ sa(B/I) and let A = π−1[A] ∈ saI(B). Now because of the surjectivity
of π we have ω(A) = π[A] = π[π−1[A]] = A, and this also holds true for
hereditary subalgebras.

For the proof of injectivity of the function ω we first show that for any
C∗-subalgebra A ∈ saI(B) we have A = π−1[π[A]]. Otherwise, there would
exist a b ∈ π−1[π[A]] \ A with π(b) ∈ π[π−1[π[A]]] = π[A] and there would
exist a c ∈ A such that π(b) = π(c), i.e. b − c ∈ I. But then b ∈ c+ I ⊆ A,
which contradicts the choice of b.

Now let A,B ∈ saI(B) such that ω(A) = ω(B), i.e. π[A] = π[B]. It follows
from the equation above that A = π−1[π[A]] = π−1[π[B]] = B, i.e. ω is an
injection.

In the same manner as above we prove the claim about Hilbert C∗-
modules. First observe that the π-morphism Π : X → X/XI preserves
structures of C∗-modules, hereditary modules and ideal submodules, so the
functions Ω and Ωh are well defined.

We show that for any full Hilbert C∗-module Y ∈ sm(X/XI) the inverse
image Y = Π−1[Y ] ∈ smXI

(X ) is a full π−1[〈Y |Y 〉]-module. For any λ ∈ C
and xi ∈ Y (i = 1, 2), we have Π(λx1 + x2) = λΠ(x1) + Π(x2) ∈ Y , hence
λx1 + x2 ∈ Π−1[Y ] = Y. Also for a ∈ B we have Π(x1a) = Π(x1)π(a) ∈ Y ,
i.e. x1a ∈ Y. For the proof of closedness in norm of the set Y we take any
sequence (xn)n in Y, n ∈ N, with x = limn xn ∈ X . Then by closedness
in norm of the C∗-module Y we have Π(x) = limn Π(xn) ∈ Y , so x ∈ Y,
i.e. Y = Π−1[Y ] ∈ smXI

(X ). That Y is a full module follows from the fact
that Y is a full module, the definition of the inner product for the quotient
of the modules 〈Π(Y)|Π(Y)〉 = π(〈Y|Y〉) and properties of π, so 〈Y|Y〉 =
π−1[π[〈Y|Y〉]] = π−1[〈Y |Y 〉]].
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In order to prove that Y ∈ hm(X/XI) implies Y = Π−1[Y ] ∈ hmXI
(X )

first recall that 〈Y|Y〉 is a hereditary subalgebra of B. For any x ∈ X and
a ∈ 〈Y|Y〉 we have π(a) ∈ 〈Y |Y 〉 and because Y is a hereditary module of
X/XI we have Π(xa) = Π(x)π(a) ∈ Y , so xa ∈ Y.

For the proof of surjectivity of the function Ω we take any C∗-module
Y ∈ sm(X/XI) and take Y = Π−1[Y ] ∈ smXI

(X ). Now by surjectivity of Π
we have Ω(Y) = Π[Y] = Π[Π−1[Y ]] = Y , and the same is true for hereditary
modules.

For the proof of injectivity of the function Ω we first show that for any
C∗-submodule Y of X containing XI we have Y = Π−1[Π[Y]]. Otherwise
there would exist an x ∈ Π−1[Π[Y]] \ Y with Π(x) ∈ Π[Π−1[Π[Y]]] = Π[Y].
Then there exists y ∈ Y such that Π(x) = Π(y), i.e. x − y ∈ XI . But then
x ∈ y + XI ⊆ Y contradicts with the choice of x.

Let Y1,Y2 ∈ haXXI

(X ) be such that Ω(Y1) = Ω(Y2), i.e. Π[Y1] = Π[Y2].

From the equality above it follows Y1 = Π−1[Π[Y1]] = Π−1[Π[Y2]] = Y2, i.e. Ω
is injection.

The following lemmas contain results on multiplier algebras of quotients
of C∗-algebras and multiplier modules of quotients of Hilbert modules.

Lemma 4.31. Let A be a C∗-algebra containing an essential ideal I and
let X be a full Hilbert A-module. We have inclusions I ⊆ A ⊆M(A)∩M(I),
A/I ⊆M(A)/I ∩M(A/I) ∩ C(I) and XI ⊆ X ⊆M(X ) ∩M(XI), X/XI ⊆
M(X )/XI ∩M(X/XI) ∩ C(XI).

I is essential in M(A) if and only if M(A) ⊆ M(I), and then M(X ) ⊆
M(XI), M(X )/XI ⊆ M(X/XI) ∩ C(XI). In the previous case, A is an
ideal of M(I) if and only if M(I) = M(A), and then M(X ) = M(XI),
C(XI) ⊆M(X/XI).

Proof. Because I is an essential ideal of A and A is an essential ideal of
M(A) we have that I is an ideal ofM(A). Then first inclusion follow directly
from the definition of multiplier algebras.

If I is essential in M(A) then M(A) is a unitization of I, hence M(A) ⊆
M(I). Conversely, if M(A) ⊆M(I), because I is essential in M(I) we have
I⊥M(A) = I⊥ ∩M(A) = {0}. In this case we immediately have M(X )/XI ⊆
C(XI). In order to have inclusion M(X )/XI ⊆ M(X/XI) we have to prove
that π(A), which is obviously an ideal of π(M(A)), is essential. Therefore, let
us take b = π(c) for some c ∈ M(A) and π(A)b = 0. Then π(Ac) = 0, hence
Ac ⊆ I, therefore, c ∈ I and b = π(c) = 0.

Furthermore in the previous case if A is an ideal in M(I) then, as we did
before, A⊥ ⊆ I⊥ = {0}, so A is essential and M(I) is an unitization of A,
hence M(I) ⊆M(A) and therefore, M(I) =M(A). The converse is obvious.
Then C(XI) ⊆M(X/XI).

In the following proposition we show the bijective connection of hereditary
C∗-subalgebras and of corresponding hereditary modules.
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Proposition 4.32. Let I be a non-unital C∗-algebra and let XI be a full
I-module. Then the mapping Υ : haI(〈M(XI)|M(XI)〉) → hmXI

(M(XI)),
acting as Υ(A) =M(XI)A, for any A ∈ haI(〈M(XI)|M(XI)〉), is a bijection.

Proof. The surjectivity of the function Υ follows from the definition of
the hereditary module because every hereditary Hilbert C∗-module ofM(XI)
is of the formM(XI)A for some hereditary C∗-algebra A of 〈M(XI)|M(XI)〉
which is an ideal of M(I), i.e. M(XI)A = Υ(A).

For the proof of injectivity, suppose that Υ(A) = Υ(B) for some A,B ∈
haI(〈M(XI)|M(XI)〉), so 〈Υ(A)|Υ(A)〉 = 〈Υ(B)|Υ(B)〉. Because M(XI) is
a full 〈M(XI)|M(XI)〉-module, it follows from Proposition 4.25 that A =
〈M(XI)A|M(XI)A〉 = 〈Υ(A)|Υ(A)〉 for any A ∈ haI(〈M(XI)|M(XI)〉), and
we have A = B.

Remark 4.33. Because 〈M(XI)|M(XI)〉 is an ideal ofM(I), observe that
from Remark 4.24 it follows haI(〈M(XI)|M(XI)〉) ⊆ haI(M(I)). However,
it is not generally possible to extend the function Υ to M(I) and preserve its
injectivity because a multiplier module is not always a full M(I)-module (see
Example 4.12).

Lemma 4.34. Let A = (Aj)j∈J , K(Hj) ⊆ Aj ⊆ B(Hj), j ∈ J , be
a family of hereditary C∗-algebras, let X = (Xj)j∈J , K(Hj , Gj) ⊆ Xj ⊆
B(Hj , Gj), be a family of hereditary Hilbert Aj-modules of B(Hj , Gj), j ∈ J ,
and let C be any ideal of C∞ containing C0. Then C- ⊕j∈J Aj is a hereditary
C∗-algebra of M(K) containing K = C0- ⊕j∈J K(Hj) and C- ⊕j∈J Xj =
C-⊕j∈J B(Hj , Gj)Aj is a hereditary C-⊕j∈J Aj-module of M(XK) containing
XK.

Proof. Let ai = (a
(i)
j ) ∈ C- ⊕j∈J Aj , i = 1, 2, and m = (mj) ∈

C∞- ⊕j∈J B(Hj) be such that for some 0 < α ∈ R we have ‖mj‖j ≤ α,

∀j ∈ J . Then it follows ‖a
(1)
j mja

(2)
j ‖j ≤ α‖a

(1)
j ‖j‖a

(2)
j ‖j , for any j ∈ J ,

i.e. α(‖a
(1)
j ‖j)j(‖a

(2)
j ‖j)j ∈ C. Therefore, a(1)ma(2) ∈ C- ⊕j∈J Aj , so is

C-⊕j∈J Aj a hereditary C∗-subalgebra of M(K) containing K.
Analogously we prove

C-⊕j∈J Xj C-⊕j∈J Aj ⊆ C-⊕j∈J Xj ,(4.17)

C∞-⊕j∈J B(Hj , Gj) C-⊕j∈J Aj ⊆ C-⊕j∈J Xj .(4.18)

Inclusion (4.17) implies that C-⊕j∈J Xj is a Hilbert C-⊕j∈J Aj-module and
from (4.18) we have

(4.19)
M(XK)C-⊕j∈J Aj = C∞-⊕j∈J B(Hj , Gj) · C-⊕j∈J Aj

⊆ C-⊕j∈J B(Hj , Gj)Aj = C-⊕j∈J Xj .

The opposite inclusions in (4.17), (4.18) and (4.19) follow by applying the
Cohen-Hewitt theorem on factorization (cf. [13, Proposition 2.31]) to the
Hilbert C- ⊕j∈J Aj-module C-⊕j∈J Xj .
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Acknowledgements.

The author thanks the referee for valuable suggestions improving the pre-
sentation of the results. The author’s work was supported by Croatian Science
Foundation project IP-2016-06-1046.

References
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