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Research Statement

The theory fractal strings and their complex dimensions has been developed by Pro-
fessor M. L. Lapidus and his collaborators in the last two decades. Fractal strings can be
viewed as objects that are generated by certain fractal sets on the real line. More pre-
cisely, for A ⊂ R of zero Lebesgue measure, a fractal string is defined as the sequence of
the finite lengths of the complementary intervals of the set A; see [Lap–vFr1–3] and the
relevant references therein. My research is focused on generalizing this vast theory and
its consequences to the higher-dimensional case. This research started as a collaboration
between my two supervisors, Professor Michel L. Lapidus and Professor Darko Žubrinić in
2009, with the later addition of myself. The collaboration resulted in an extensive research
monograph [LapRaŽu1] which is a significant extension of the theory of fractal zeta func-
tions for fractal strings, as well as two survey articles and a number of research articles in
various stages of preparation; see [LapRaŽu2–9].

When referring to a fractal set, we actually mean any nonempty bounded subset A
of the N -dimensional Euclidean space RN , with N ≥ 1. The attribute ‘fractal’ actually
means that the basic tool, when studying the set A, is the notion of fractal dimension. As
it turns out, the one1 that best suits this theory is the (upper) box dimension (also called
the Minkowski dimension, Bouligand dimension, limit capacity, etc.). Furthermore, the
value of the Minkowski content of a bounded subset A of RN can be used as one of the
equivalent ways to define the box dimension. More precisely, for a bounded subset A of
RN and 0 ≤ r ≤ N we denote its r-dimensional Minkowski content by

Mr(A) := lim
δ→0+

|Aδ|
δN−r

, (1)

whenever this limit exists as a value in [0,∞]. Here, |·| denotes the N -dimensional Lebesgue
measure in RN and

Aδ := {x ∈ RN : d(x,A) < δ} (2)

is the δ-neighborhood (or the δ-parallel set) of A with d(x,A) := inf{|x− a| : a ∈ A} being
the Euclidean distance from x to A. The set A is said to be Minkowski measurable (of
dimension r) if Mr(A) exists and satisfies 0 <Mr(A) <∞.

It has been of considerable interest in the past to determine whether a set A is
Minkowski measurable. One of the motivations is Mandelbrot’s suggestion in [Man2] to
use the Minkowski content as a characteristic for the texture of sets (see [Man1, §X]).
Mandelbrot called the quantity 1/Mr(A) the lacunarity of the set A and made an obser-
vation that for subsets of RN small lacunarity corresponds to spatial homogeneity of the

1There are several different notions of fractal dimension, e.g., Hausdorff dimension, packing dimension,
etc. (see [Fal1]).
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set, i.e., the set has small, uniformly distributed holes. On the other hand, large lacunarity
corresponds to clustering of the set and large holes between different clusters. More on
this can be found in [BedFi, Fr, Lap–vFr1] and in [Lap–vFr3, §12.1.3].

Particular attention to the notion of Minkowski content arose in connection to the
(modified) Weyl–Berry conjecture2 (see the formulation in [Lap1]) which was proved for
subsets of R in 1993 by M. L. Lapidus and C. Pomerance [LapPo1]. This conjecture
relates the spectral asymptotics of the Laplacian on a bounded open set and the Minkowski
content of its boundary. A crucial part of this result was the characterization of Minkowski
measurability of bounded subsets of R obtained in [LapPo1].3 In particular, this led to an
important reformulation of the Riemann hypothesis in terms of an inverse spectral problem
for fractal strings; see [LapMa].

As already mentioned, the theory of complex dimensions has been generalized to higher-
dimensions in the research monograph [LapRaŽu1] and in [LapRaŽu2–9]; that is, to the
case of arbitrary compact subsets in Euclidean spaces of any dimension. The fractal zeta
function on which this generalization is based was introduced in 2009 by M. L. Lapidus
and its definition was inspired by a work of D. Žubrinić on singular sets of some spaces
of functions (see [Žu1–4]). For another higher-dimensional generalization of the theory
of complex dimensions see [LapRoŽu], where the notion of box-counting zeta function is
introduced.

More specifically, for a given bounded subsetA ⊆ RN we define its distance zeta function
as

ζA(s; δ) :=

∫
Aδ

d(x,A)s−N dx, (3)

for Re s sufficiently large and a fixed δ > 0. It turns out that the dependence of ζA on δ
is inessential since in the theory of complex dimensions we are, generally, interested in the
poles of a meromorphic extension of ζA(s; δ) and changing the parameter δ does not affect
the poles or the principal part of a (possible) meromorphic extension of the distance zeta
function in any way.

One generalization of the notion of Minkowski content and box dimension can be made
for objects that we call relative fractal drums. A relative fractal drum is an ordered pair
of subsets (A,Ω) of RN such that Ω is Lebesgue measurable and of finite N -dimensional
Lebesgue measure. Furthermore, for a relative fractal drum (A,Ω) in RN and r ∈ R we
denote its r-dimensional relative Minkowski content by

Mr(A,Ω) = lim
δ→0+

|Aδ ∩ Ω|
δN−r

, (4)

whenever this limit exists as a value in [0,∞]. Now, by using this notion, we can define the
relative box dimension of (A,Ω) in a standard way, with values in [−∞, N ]. The novelty
here is that we now let r ∈ R, which is not a coincidence, since there exist relative fractal
drums with negative box dimension as was demonstrated in [LapRaŽu1]. Furthermore, for

2For the original Weyl–Berry conjecture and its physical applications see Berry’s papers [Berr1–2].
Furthermore, early mathematical work on this conjecture and its applications can be found in [BroCar,
FlVa, Lap1, Lap2, LapPo1, LapPo2]. For a more extensive list of later work see [Lap–vFr3, §12.5].

3A new proof of this is given in [Fal2] and more recently in [RatWi2].
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a relative fractal drum (A,Ω) in RN , one defines its relative distance zeta function as

ζA,Ω(s) :=

∫
Ω

d(x,A)s−N dx, (5)

for Re s sufficiently large. This, in turn, allows one to develop a theory of complex dimen-
sions of relative fractal drums in a much the same manner as it is done for bounded subsets
in RN .

The notion of RFDs gives us a unified category under which fractal strings, bounded
subsets of Euclidean spaces (of arbitrary dimension) and open subsets of Euclidean spaces
with fractal boundary (also known as fractal drums) fall into. By developing the theory of
complex dimensions in this generality we can apply it to all of these settings without the
need to distinguish them separately and this is one of the powers and flexibilities of the
notion of RFDs.

Some results obtained

Fractal tube formulas for relative fractal drums

These results (announced in [LapRaŽu7] and fully exposed in [LapRaŽu8–9], see also
[Ra1]) concern the problem of obtaining fractal tube formulas, for a class of relative fractal
drums in terms of sums over the residues of their relative distance or tube zeta functions. By
a fractal tube formula of the relative fractal drum (A,Ω) we mean an exact or asymptotic
expansion of the relative tube function t 7→ |At ∩ Ω| when t → 0+. These formulas hold
pointwise or distributionally, depending on the growth properties of the corresponding
relative zeta function. Furthermore, these results extend the corresponding ones obtained
in [Lap–vFr1–3] for fractal strings to sets and RFD in higher-dimensional Euclidean spaces.
Roughly speaking, under suitable growth conditions imposed on the relative distance zeta
function of an relative fractal drum (A,Ω) in RN , we have that the following asymptotic
formula for its relative tube function holds:

|At ∩ Ω| =
∑

ω∈P(ζA,Ω,W )

res

(
tN−s

N−s
ζA,Ω(s), ω

)
+R[0](t). (6)

Here, P(ζA,Ω,W ) denotes the set of visible complex dimensions of (A,Ω) defined as the
poles of (a meromorphic continuation) of ζA,Ω contained in the domain W and R[0](t) is
the error term which is of strictly higher asymptotic order as t→ 0+ than the sum above.
As an application of these fractal tube formulas and a Tauberian theorem due to Wiener
and Pitt we obtain a Minkowski measurability criterion for a large class of relative fractal
drums (and, a posteriori, compact subsets) of RN . We refer to [Lap–vFr3, §13.1] for many
additional references on tube formulas in various settings, including, [Gra, HuLaWe, Schn,
Zäh, LapPe, LapPeWi1, LapPeWi2].

Fractal analysis of unbounded sets at infinity

In [Ra1, Ra2] we extend the theory of complex dimensions (with appropriate definitions)
to the case of unbounded subsets of RN . There are two different (but, in a way, related)
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approaches to this problem. One of them was explored in the paper [RaŽuŽup], where
for an unbounded subset A ⊆ RN the fractal properties of its image Φ(A) under the
geometric inversion Φ(x) := x/|x|2 in RN were applied in investigating bifurcations of some
polynomial vector fields in R2. There it was also shown that this approach is equivalent to
studying the fractal properties of the image of Ψ(A) on the Riemann sphere S2 under the
stereographic projection Ψ: R2 → S2.

The second approach deals with the notion of a “fractal set at infinity”. More precisely,
D. Žubrinić suggested to try to analyze an unbounded Lebesgue measurable set Ω of finite
N -dimensional Lebesgue measure by means of its tube function at infinity which is defined
as

t 7→ |Bt(0)c ∩ Ω|, (7)

where Bt(0)c denotes the complement of the open ball in RN of radius t with center at the
origin. Also, a suggestion by D. Žubrinić was to define a Lapidus (distance) zeta function
of Ω at infinity by replacing the integrand in (5) by some suitably chosen power of |x|. As
it turned out, the right way to define the Lapidus zeta function of Ω at infinity was

ζ∞,Ω(s) :=

∫
Ω

|x|−s−N dx, (8)

for Re s sufficiently large. We show that his definition is perfectly in accordance with the
(also new) notion of the r-dimensional Minkowski content of Ω at infinity defined by

Mr(∞,Ω) := lim
t→+∞

|Bt(0)c ∩ Ω|
tN+r

(9)

for r ∈ R whenever it exists and also with the notion of Minkowski dimension of Ω at
infinity which it induces. Using these definitions, we extend the theory of [LapRaŽu1–9]
to the case of unbounded Lebesgue measurable subsets Ω of RN .

The notation of (9) suggests that a fractal set Ω at infinity may be understood as a
special case of a relative fractal drum (A,Ω) where the set A has degenerated to a point
at infinity. This is indeed the case and the fractal properties of this relative fractal drum
will be closely related to the fractal properties of its ‘inverted relative fractal drum’; that
is, of ({0},Φ(Ω)). In light of this, the box dimensions of unbounded sets at infinity will
always be nonpositive4 or, more precisely, less than or equal to −N .

We present examples of relative fractal drums of type (∞,Ω) that provide some in-
teresting insights into the notion of ‘fractality’ or rather, ‘relative fractality’.5 Namely,
although the ‘fractal set’ A has degenerated to a point at infinity (and thus, one would
not expect it to be fractal in any way; that is, to have nontrivial fractal properties), we
show that the set Ω will be the source of fractality in this case. More precisely, we demon-
strate this by constructing quasiperiodic sets at infinity and even a set Ω that is maximally
hyperfractal at infinity.6 The idea of this construction can also be applied to the case of

4The box dimension of a relative fractal drum of type ({0},Ω) is at most equal to 0 since the set A
here consists of a single point.

5For a discussion of the notion of fractality see [Lap–vFr3] and the relevant references therein.
6The notion of a (maximally) hyperfractal set was introduced in [LapRaŽu1] in terms of the corre-

sponding fractal zeta function associated to that set. In a way, such sets exhibit the most complicated
geometrical nature.
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ordinary relative fractal drums of form ({0},Ω) in order to demonstrate the existence of
such a complicated objects even though the set A consists only of a single point and thus,
again, the source of fractality of ({0},Ω) in this case is the set Ω.

By looking at Equation (8); that is, at the definition of the distance zeta function at
infinity, one can see that for it to make sense, it is not necessary for the set Ω to have
finite Lebesgue measure, but rather, to be just Lebesgue measurable. This turned out to
be nicely related to a new notion of a parametric Minkowski content introduced in [Ra1]
called the r-dimensional φ-shell Minkowski content at infinity, where, φ > 1 is a parameter
and r ∈ R. For a Lebesgue measurable subset Ω ∈ RN we define it as

Mr
φ(∞,Ω) := lim

t→+∞

|Bt(0)c ∩Bφt(0) ∩ Ω|
tN+r

(10)

whenever this limit exists. The idea to introduce this notion originally came into existence
as a side effect of studying the connection between fractal properties of the relative fractal
drum (∞,Ω) and the fractal properties of its image on the N -dimensional Riemann sphere
under the stereographic projection Ψ. Furthermore, the notion of φ-shell box dimension
of Ω at infinity, which the φ-shell Minkowski content at infinity induces, generalizes the
already introduced definition of box dimension at infinity for sets of finite Lebesgue mea-
sure. Moreover, the sets of infinite Lebesgue measure will have their φ-shell box dimension
(if it exists) always in the interval [−N, 0] which fills out the ‘dimensional gap’ left over by
the sets of finite Lebesgue measure.7

We point out that one can also define an analog of the φ-shell Minkowski content for
relative fractal drums and study its properties. In particular, it would be interesting to
fully relate this notion to the notion of surface Minkowski content studied in [RatWi1]
and [RatWi2]. Some preliminary results about this problem (in the case of fractal sets at
infinity) are also obtained in [Ra1].

The motivation to study the fractal properties of unbounded sets comes from a variety
of sources. In particular, the notion of ”unbounded” or ”divergent” oscillations appears
in problems in oscillation theory (see, e.g. [Džu, Karp]), automotive industry (see, e.g.,
[SBOPQD]), civil engineering (see, e.g, [Pou]) and mathematical applications in biology
(see, e.g., [May]). Unbounded (divergent) oscillations are oscillations the amplitude of
which increases with time. For instance, the oscillations of an airplane that has positive
static stability but negative dynamic stability is an example of divergent oscillations that
appears in aerodynamics (see, e.g. [Dol]).

Furthermore, unbounded domains themselves are also interesting in the theory of ellip-
tic partial differential equations. More precisely, the question of solvability of the Dirichlet
problem for quasilinear equations in unbounded domains is addressed in [Maz1] and [Maz2,
Section 15.8.1]. Also, unbounded domains can be found in other aspects of the theory of
partial differential equations; see, for instance [An, Hur, Lan, Rab] and [VoGoLat]. Re-
search dealing with unbounded domains of infinite volume can be found in [GeWe], and
connected with that is the research dealing with cusp-shaped domains (see, e.g., [ExBa1–
2]), which also appear in examples in [Ra1]. Furthermore, the new notion of the φ-shell
Minkowski content could possibly have a connection to certain comparison principles for

7Recall that the sets of finite Lebesgue measure always have (if it exists) their box dimension at infinity
less than or equal to −N .
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the p-Laplacian (see, e.g., [Ag, MarMizPin, PolSha] and the relevant references therein).
Fractal properties of unbounded domains, studied here, could therefore have a future im-
pact and lead to a new approach to these problems.

Current and future research problems

My current research is a continuation of work on the theory of complex dimensions,
fractal zeta functions, fractal geometry and fractal analysis of differential equations and
dynamical systems. The theory of fractal strings, their geometric zeta functions and the
complex dimensions which these zeta functions generate has been a topic of extensive
research in the last few decades and has, in its own, a wide variety of applications. The
foundations for generalizing this theory to higher dimensions are laid in the research mono-
graph [LapRaŽu1] which is completed and due to appear in 2016.

The fractal tube formulas obtained in [Ra1] and [LapRaŽu1,8–9] and the Minkowski
measurability criterion given as their application are important results that generalize the
corresponding ones for the case of one-dimensional fractal strings obtained in [Lap–vFr1–3]
and give a justification of the notion of complex dimensions as a new tool to measure fractal
properties of subsets of Euclidean spaces and, more generally, of relative fractal drums.
Although it seems that a fairly large class of sets satisfy the conditions which enables one
to derive their fractal tube formulas as a sum of residues over their complex dimensions
and, hence, the theory from [Ra1] may be applied to them, it remains to investigate this
in detail and obtain some general results.

Furthermore, the results from [Ra1] about embedded relative fractal drums give a
strategy of computing complex dimensions of a class of higher-dimensional fractal sets
by decomposing them into their lower-dimensional ‘relative fractal subdrums’ like it was
shown in the example of the Cantor dust. Since it is not, in general, easy to compute the
distance zeta function of a given relative fractal drum and, hence, its complex dimensions,
we propose further investigation into other types of embeddings of relative fractal drums
in higher dimensions and their fractal zeta functions. For instance, one could consider
relative fractal drums (∂Ω,Ω) where the boundary ∂Ω is a subset of a piecewise smooth
curve but also has lower-dimensional fractal properties. This situation appears, for instance
in the well-known fractal sets such as the von Koch snowflake and the Menger sponge.
Furthermore, also concerning the computation of fractal zeta functions, it would be of
interest to obtain zero-free regions for these zeta functions as well as general results about
stability of complex dimensions under perturbations of the integrand appearing in the
definition of the distance zeta function.

Furthermore, a new direction of research has been started recently. Namely, we have
found examples of fractal sets that generate nontrivial Riemann surfaces via their fractal
zeta functions. This phenomena is related to the non-power like asymptotics of their tube
functions. We plan to further investigate this phenomena and connect it to the notion of
gauge functions and gauge Minkowski measurability of RFDs.

The generalization of the idea of complex dimensions and fractal zeta functions to the
case of unbounded sets at infinity gives means of applying fractal analysis to unbounded
regions of finite or infinite Lebesgue measure in Euclidean spaces and the examples pro-
vided demonstrate that such regions can have a very complex fractal structure at infinity
exhibiting quasiperiodicity and even maximal hyperfractality. Since unbounded regions
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are of interest in the theory of partial differential equations we propose to study if our
approach of fractal analysis can be applied to any problems in this area of research.

Our effort to apply fractal analysis to unbounded sets of infinite Lebesgue measure led to
the introduction of new notions, at least to our knowledge, of parametric φ-shell Minkowski
content and the corresponding parametric φ-shell Minkowski (or box) dimension. Although
introduced in the context of unbounded sets at infinity these notions are also well defined
for bounded subsets and relative fractal drums. Preliminary results obtained show that
these new notions are connected with notions of the (usual) Minkowski content and the
surface Minkowski content studied by Rataj and Winter in [RatWi1–2]. We suggest to
study this connection in detail in a future work and obtain general results as well as to
investigate possible applications.

The paper [RaŽuŽup] demonstrates how fractal analysis of unbounded sets may be
applied to investigate dynamical systems and their bifurcations at infinity. Fractal analysis
of dynamical systems and differential equations has been an ongoing investigation for the
past decade by our research group resulting in the publication of a number of articles
(see, e.g., [Hor1–2, MaResŽup, PaŽuŽup1–2, Res1–2, Vl, ŽuŽup1–3, ŽupŽu]). We propose
to continue this research by applying the new theory developed in this thesis and in the
research monograph [LapRaŽu1].
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[ŽuŽup3] D. Žubrinić and V. Županović, Poincaré map in fractal analysis of spiral trajectories
of planar vector fields, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 947-960.
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