Glasnik Matematicki, Vol. 60, No. 2 (2025), 353-373. \( \)
PERMUTATION TEST OF INDEPENDENCE IN TAILS FOR DEPENDENT PROCESSES
Darko Brborović
Faculty of Informatics, University of Pula, Pula, Croatia
e-mail:darko.brborovic1@gmail.com
Abstract.
In this article, we propose a permutation test for independence in the tails of two strongly mixing and strictly stationary sequences. We establish the asymptotic validity of the test by demonstrating that both the test statistic and its permutation distribution are asymptotically normal. These results build upon and generalize findings from Basrak and Brborović [1]. Additionally, we conduct a simulation study to evaluate the size and power properties of the proposed test.
2020 Mathematics Subject Classification. 60F05, 62G09, 62G32, 62E20
Key words and phrases. Permutation test, Central limit theorem, Independence in tails, Extreme value analysis
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.2.09
References:
-
B. Basrak and D. Brborović, Permutation test of tail dependence, Stat. Methods Appl. 33 (2024), 89–129.
MathSciNet
CrossRef
-
D. Brborović, Statistical analysis of the tail behaviour of dependent sequences, PhD thesis, University of Zagreb, Faculty of Science, Department of Mathematics, 2022.
-
P. Billingsley, Probability and measure, John Wiley & Sons, Inc., New York, 1995.
MathSciNet
-
R. C. Bradley, Introduction to strong mixing conditions, Kendrick Press, Heber City, 2009.
MathSciNet
-
E. Chung and J. P. Romano, Exact and asymptotically robust permutation tests, Ann. Statist 41 (2013), 484–507.
MathSciNet
CrossRef
-
R. Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance 1 (2001), 223–236.
CrossRef
-
V. H. de la Pena, R. Ibragimov and S. Sharakhmetov, Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series, Institute of Mathematical Statistics, Beachwood, 2006, 183–209.
MathSciNet
CrossRef
-
C. J. DiCiccio and J. P. Romano Robust permutation tests for correlation and regression coefficients, J. Amer. Statist. Assoc. 112 (2017), 1211–1220.
MathSciNet
CrossRef
-
P. Embrechts, A. McNeil and D. Straumann Correlation and dependence in risk management: properties and pitfalls, In Risk Management: Value at Risk and Beyond. Cambridge University Press, Cambridge, 2002, 176–223.
CrossRef
-
A. Galanos, rugarch: Univariate GARCH models. R package version 1.5-3., 2024.
-
V. Hoeffding, A combinatorial central limit theorem, Ann. Math. Statistics 22 (1951), 558–566.
MathSciNet
CrossRef
-
M. Hofert, I. Kojadinovic, M. Maechler and J. Yan, copula: Multivariate dependence with copulas. R package version 1.1-6, 2024.
Link
-
M. Hofert and Ma. Maechler, Nested Archimedean copulas meet R: The nacopula package. Journal of Statistical Software 39 (2011), 1-20.
Link
-
I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Verojatnost. i Primenen. 7 (1962), 361–392.
MathSciNet
-
O. Kallenberg, Foundations of modern probability, Springer-Verlag, New York, 2002.
MathSciNet
CrossRef
-
I. Kojadinovic and J. Yan, Modeling multivariate distributions with continuous margins using the copula R package, Journal of Statistical Software 34 (2010), 1–20. .
-
E. L. Lehman, and J. P. Romano, Testing statistical hypotheses, Springer, New York, 2005.
MathSciNet
-
A. M. Lindner, Stationarity, mixing, distributional properties and moments of GARCH(p, q)–processes. In Handbook of financial time series, Springer, Berlin, Heidelberg, 2009.
CrossRef
-
R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
-
S. I. Resnick, Heavy tail phenomena, probabilistic and statistical modeling, Springer New York, 2007.
CrossRef
-
J. P. Romano and M. A. Tirlea, Permutation testing for dependence in time series, J. Time Series Anal. 43 (2022), 781–807.
MathSciNet
CrossRef
-
G. Simpson, permute: Functions for generating restricted permutations of data. R package version 0.9-7, 2022.
Link
-
M. A. Tirlea, Permutation-based inference in time series analysis, PhD Thesis, Stanford University, 2023.
-
J. Yan, Enjoy the joy of copulas: with a package copula, Journal of Statistical Software 21 (2007), 1–21.
Link
Glasnik Matematicki Home Page