Glasnik Matematicki, Vol. 60, No. 2 (2025), 327-352. \( \)

PRESCRIBED WEINGARTEN CURVATURE EQUATIONS IN WARPED PRODUCT MANIFOLDS

Ya Gao, Chenyang Liu and Jing Mao

School of Mathematical Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China,
Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, China
e-mail:Echo-gaoya@outlook.com

Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, China
e-mail:1109452431@qq.com

Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, China,
Key Laboratory of Intelligent Sensing System and Security (Hubei University), Ministry of Education, China
e-mail:jiner120@163.com


Abstract.   In this paper, under suitable settings, we can obtain the existence of solutions to a class of prescribed Weingarten curvature equations in warped product manifolds of special type by the standard degree theory based on the a priori estimates for the solutions. This is to say that the existence of closed hypersurface (which is graphic with respect to the base manifold and whose \(k\)-Weingarten curvature satisfies some constraint) in a given warped product manifold of special type can be assured.

2020 Mathematics Subject Classification.   53C42, 35J60

Key words and phrases.   Prescribed Weingarten curvature equations, \(k\)-convex, starshaped, warped product manifolds.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.08


References:

  1. F. Andrade, J. Barbosa and J. de Lira, Closed Weingarten hypersurfaces in warped product manifolds, Indiana Univ. Math. J. 58 (2009), 1691–1718.
    MathSciNet    CrossRef

  2. L. Chen, A. G. Shang and Q. Tu, A class of prescribed Weingarten curvature equations in Euclidean space, Comm. Partial Differential Equations 46 (2021), 1326–1343.
    MathSciNet    CrossRef

  3. D. G. Chen, H. Z. Li and Z. Z. Wang, Starshaped compact hypersurfaces with prescribed Weingarten curvature in warped product manifolds, Calc. Var. Partial Differential Equations 57 (2018), Paper No. 42.
    MathSciNet    CrossRef

  4. X. J. Chen, Q. Tu and N. Xiang, \(k\)-convex hypersurfaces with prescribed Weingarten curvature in warped product manifold, Nonlinear Anal. 249 (2024), Article No. 113640.
    MathSciNet    CrossRef

  5. L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333–363.
    MathSciNet    CrossRef

  6. P. Freitas, J. Mao and I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), 701–724.
    MathSciNet    CrossRef

  7. J. X. Fu and S. T. Yau, A Monge-Ampère type equation motivated by string theory, Comm. Anal. Geom. 15 (2007), 29–75.
    MathSciNet    CrossRef

  8. J. X. Fu and S. T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Differential Geom. 78 (2008), 369–428.
    MathSciNet    Link

  9. P. F. Guan and J. Li, A mean curvature type flow in space forms, Int. Math. Res. Not. IMRN 2015 (2015), 4716–4740.
    MathSciNet    CrossRef

  10. P. F. Guan and X. N. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), 553–577.
    MathSciNet    CrossRef

  11. P. F. Guan, C. Y. Ren and Z. Z. Wang, Global \(C^{2}\)-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math. 68 (2015), 1287–1325.
    MathSciNet    CrossRef

  12. P. F. Guan and X. W. Zhang, A class of curvature type equations, Pure Appl. Math. Q. 17 (2021), 865–907.
    MathSciNet    CrossRef

  13. N. N. Katz and K. Kondo, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), 2279–2284.
    MathSciNet    CrossRef

  14. N. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75–108.
    MathSciNet

  15. N. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc. 347 (1995), 857–895.
    MathSciNet    CrossRef

  16. Y. Y. Li, Degree theory for second order nonlinear elliptic operators and its applications, Comm. Partial Differential Equations 14 (1989), 1541–1578.
    MathSciNet    CrossRef

  17. M. Lin and N. S. Trudinger, On some inequalities for elementary symmetric functions, Bull. Aust. Math. Soc. 50 (1994), 317–326.
    MathSciNet    CrossRef

  18. W. Lu, J. Mao, C. X. Wu and L. Z. Zeng, Eigenvalue estimates for the drifting Laplacian and the \(p\)-Laplacian on submanifolds of warped products, Appl. Anal. 100 (2021), 2275–2300.
    MathSciNet    CrossRef

  19. J. Mao, Eigenvalue inequalities for the \(p\)-Laplacian on a Riemannian manifold and estimates for the heat kernel, J. Math. Pures Appl. (9) 101 (2014), 372–393.
    MathSciNet    CrossRef

  20. J. Mao, Volume comparisons for manifolds with radial curvature bounded, Czech. Math. J. 66(141) (2016), 71–86.
    MathSciNet    CrossRef

  21. J. Mao, F. Du and C. X. Wu, Eigenvalue problems on manifolds, Science Press, Beijing, 2017.

  22. J. Mao, Geometry and topology of manifolds with integral radial curvature bounds, Differ. Geom. Appl. 91 (2023), Article No. 102064.
    MathSciNet    CrossRef

  23. B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Academic Press, New York, 1983.
    MathSciNet

  24. P. Petersen, Riemannian geometry, Springer, New York, 2006.
    MathSciNet

  25. D. H. Phong, S. Picard and X. W. Zhang, The Fu-Yau equation with negative slope parameter, Invent. Math. 209 (2017), 541–576.
    MathSciNet    CrossRef

  26. D. H. Phong, S. Picard and X. W. Zhang, On estimates for the Fu-Yau generalization of a Strominger system, J. Reine Angew. Math. 751 (2019), 243–274.
    MathSciNet    CrossRef

  27. D. H. Phong, S. Picard and X. W. Zhang, Fu-Yau Hessian equations, J. Differential Geom. 118 (2021), 147–187.
    MathSciNet    CrossRef

  28. A. G. Shang and Q. Tu, A class of fully nonlinear equations with linear combination of \(\sigma_{k}\)-curvature in hyperbolic space, preprint.

  29. N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Ration. Mech. Anal. 111 (1990), 153–179.
    MathSciNet    CrossRef

  30. Y. Zhao, C. X. Wu, J. Mao and F. Du, Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates, Rev. Mat. Complut. 33 (2020), 389–414.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page