Glasnik Matematicki, Vol. 60, No. 2 (2025), 267-290. \( \)

REAL EQUATIONS FOR \(o\)–EXTREMAL RIEMANN SURFACES WITH ABELIAN AUTOMORPHISM GROUPS

Ewa Kozłowska-Walania and Peter Turbek

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
e-mail:retrakt@mat.ug.edu.pl

Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street, Hammond, Indiana, 46323
e-mail:psturbek@pnw.edu


Abstract.   It is well known that the fixed point set of a Riemann surface of genus \(g\) under the action of a symmetry is either empty or consists of a disjoint set of at most \(g+1\) ovals. Bounds on the total number of fixed ovals given by a set of \(k\) non-conjugate symmetries are known. In this paper, for \(k \ge 4\), we calculate all the possible topological types of symmetries in such a maximal configuration, provided that the symmetries commute. We also find real equations for the Riemann surfaces that achieve these bounds where the symmetries are expressed as complex conjugation.

2020 Mathematics Subject Classification.   30F99, 14H37, 20F

Key words and phrases.   Riemann surface, symmetry of a Riemann surface, real form, automorphisms of Riemann surface, equations for Riemann surfaces, Fuchsian groups, Riemann uniformization theorem


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.06


References:

  1. N. L. Alling and N. Greenleaf, Klein surfaces and real algebraic function fields, Bull. Amer. Math. Soc. 75 (1969), 869–872.
    MathSciNet    CrossRef

  2. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Springer-Verlag, Berlin-New York, 1971.
    MathSciNet

  3. E. Bujalance, F. J. Cirre, J. M. Gamboa and G. Gromadzki, Symmetries of compact Riemann surfaces, Springer-Verlag, Berlin, 2010.
    MathSciNet    CrossRef

  4. E. Bujalance and A. F. Costa, On the group generated by three and four anticonformal involutions of Riemann surfaces with maximal number of fixed curves, in: Mathematical contributions in honor of Professor Enrique Outerelo Domínguez (Spanish), Homen. Univ. Complut., Madrid, 2004, 73–76.
    MathSciNet

  5. E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphisms groups of compact bordered Klein surfaces. A combinatorial approach, Springer Verlag, Berlin, 1990.
    MathSciNet    CrossRef

  6. E. Bujalance, G. Gromadzki and E. Tyszkowska, On fixed points of involutions of compact Riemann surfaces, Math. Scand. 105 (2009), 16–24.
    MathSciNet    CrossRef

  7. F. -J. Cirre and P. Turbek, The number of real ovals of a cyclic cover of the sphere, Proc. Amer. Math. Soc. 145 (2017), 2639–2647.
    MathSciNet    CrossRef

  8. J. M. Gamboa, Compact Klein surfaces with boundary viewed as real compract smooth algebraic curves, Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 27, 1991.
    MathSciNet

  9. G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces, J. Pure Appl. Algebra 121 (1997), 253–269.
    MathSciNet    CrossRef

  10. G. Gromadzki, On ovals of Riemann surfaces, Rev. Mat. Iberoamericana 16 (2000), 515–527.
    MathSciNet    CrossRef

  11. G. Gromadzki, E. Kozłowska-Walania, On ovals of non-conjugate symmetries of Riemann surfaces, Internat. J. Math. 20 (2009), 1–13.
    MathSciNet    CrossRef

  12. G. Gromadzki, E. Kozłowska-Walania, The groups generated by maximal sets of symmetries of Riemann surfaces and extremal quantities of their ovals, Mosc. Math J. 18 (2018), 421–436.
    MathSciNet    CrossRef

  13. A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurver, Math. Ann. 10 (1876), 189–198.
    CrossRef

  14. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. 17 (1966), 86–97.
    MathSciNet    CrossRef

  15. E. Kozłowska-Walania, Extremal configurations of three or four symmetries on a Riemann surface, Bull. Korean Math. Soc. 56 (2019), 73–82.
    MathSciNet    CrossRef

  16. E. Kozłowska-Walania, On \(s\)-extremal Riemann surfaces of even genus, Rev. Mat. Complut. 35 (2022), 159–178.
    MathSciNet    CrossRef

  17. E. Kozłowska-Walania, Real equations for Riemann surfaces admitting an extremal configuration of three symmetries, Houston J. Math. 46 (2020), 665–679.
    MathSciNet

  18. C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15 (1965), 699–712.
    MathSciNet    CrossRef

  19. S. M. Natanzon, Finite groups of homeomorphisms of surfaces and real forms of complex algebraic curves, Trans. Moscow Math. Soc. 51 (1989), 1–51.
    MathSciNet

  20. D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233–240.
    MathSciNet    CrossRef

  21. P. Turbek, The full automorphism group of the Kulkarni surface, Rev. Mat. Univ. Complut. Madrid 10 (1997), 265–276.
    MathSciNet

  22. P. Turbek, Computing equations, automorphisms and symmetries of Riemann surfaces, in: Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces, Amer. Math. Soc., Providence, 2014, 335–348.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page