Glasnik Matematicki, Vol. 60, No. 2 (2025), 267-290. \( \)
REAL EQUATIONS FOR \(o\)–EXTREMAL RIEMANN SURFACES WITH ABELIAN AUTOMORPHISM GROUPS
Ewa Kozłowska-Walania and Peter Turbek
Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
e-mail:retrakt@mat.ug.edu.pl
Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street, Hammond, Indiana, 46323
e-mail:psturbek@pnw.edu
Abstract.
It is well known that the fixed point set of a Riemann surface of genus \(g\) under the action of a symmetry is either empty or consists of a disjoint set of at most \(g+1\) ovals. Bounds on the total number of fixed ovals given by a set of \(k\) non-conjugate symmetries are known. In this paper, for \(k \ge 4\), we calculate all the possible topological types of symmetries in such a maximal configuration, provided that the symmetries commute. We also find real equations for the Riemann surfaces that achieve these bounds where the symmetries are expressed as complex conjugation.
2020 Mathematics Subject Classification. 30F99, 14H37, 20F
Key words and phrases. Riemann surface, symmetry of a Riemann surface, real
form, automorphisms of Riemann surface, equations for Riemann
surfaces, Fuchsian groups, Riemann uniformization theorem
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.2.06
References:
-
N. L. Alling and N. Greenleaf, Klein surfaces and real algebraic function fields, Bull. Amer. Math. Soc. 75 (1969), 869–872.
MathSciNet
CrossRef
-
N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Springer-Verlag, Berlin-New York, 1971.
MathSciNet
-
E. Bujalance, F. J. Cirre, J. M. Gamboa and G. Gromadzki, Symmetries of compact Riemann surfaces, Springer-Verlag, Berlin, 2010.
MathSciNet
CrossRef
-
E. Bujalance and A. F. Costa, On the group generated by three and four anticonformal involutions of Riemann surfaces with maximal number of fixed curves, in: Mathematical contributions in honor of Professor Enrique Outerelo Domínguez (Spanish), Homen. Univ. Complut., Madrid, 2004, 73–76.
MathSciNet
-
E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphisms groups of compact bordered Klein surfaces. A combinatorial approach, Springer Verlag, Berlin, 1990.
MathSciNet
CrossRef
-
E. Bujalance, G. Gromadzki and E. Tyszkowska, On fixed points of involutions of compact Riemann surfaces, Math. Scand. 105 (2009), 16–24.
MathSciNet
CrossRef
-
F. -J. Cirre and P. Turbek, The number of real ovals of a cyclic cover of the sphere, Proc. Amer. Math. Soc. 145 (2017), 2639–2647.
MathSciNet
CrossRef
-
J. M. Gamboa, Compact Klein surfaces with boundary viewed as real compract smooth algebraic curves, Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 27, 1991.
MathSciNet
-
G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces, J. Pure Appl. Algebra 121 (1997), 253–269.
MathSciNet
CrossRef
-
G. Gromadzki, On ovals of Riemann surfaces, Rev. Mat. Iberoamericana 16 (2000), 515–527.
MathSciNet
CrossRef
-
G. Gromadzki, E. Kozłowska-Walania, On ovals of non-conjugate symmetries of Riemann surfaces, Internat. J. Math. 20 (2009), 1–13.
MathSciNet
CrossRef
-
G. Gromadzki, E. Kozłowska-Walania, The groups generated by maximal sets of symmetries of Riemann surfaces and extremal quantities of their ovals, Mosc. Math J. 18 (2018), 421–436.
MathSciNet
CrossRef
-
A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurver, Math. Ann. 10 (1876), 189–198.
CrossRef
-
W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. 17 (1966), 86–97.
MathSciNet
CrossRef
-
E. Kozłowska-Walania, Extremal configurations of three or four symmetries on a Riemann surface, Bull. Korean Math. Soc. 56 (2019), 73–82.
MathSciNet
CrossRef
-
E. Kozłowska-Walania, On \(s\)-extremal Riemann surfaces of even genus, Rev. Mat. Complut. 35 (2022), 159–178.
MathSciNet
CrossRef
-
E. Kozłowska-Walania, Real equations for Riemann surfaces admitting an extremal configuration of three symmetries, Houston J. Math. 46 (2020), 665–679.
MathSciNet
-
C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15 (1965), 699–712.
MathSciNet
CrossRef
-
S. M. Natanzon, Finite groups of homeomorphisms of surfaces and real forms of complex algebraic curves, Trans. Moscow Math. Soc. 51 (1989), 1–51.
MathSciNet
-
D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233–240.
MathSciNet
CrossRef
-
P. Turbek, The full automorphism group of the Kulkarni surface, Rev. Mat. Univ. Complut. Madrid 10 (1997), 265–276.
MathSciNet
-
P. Turbek, Computing equations, automorphisms and symmetries of Riemann surfaces, in: Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces, Amer. Math. Soc., Providence, 2014, 335–348.
MathSciNet
CrossRef
Glasnik Matematicki Home Page