Glasnik Matematicki, Vol. 60, No. 2 (2025), 229-242. \( \)

LINEAR RELATIONS BETWEEN THREE ALGEBRAIC CONJUGATES OF DEGREE TWICE A PRIME

Paulius Virbalas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
e-mail:paulius.virbalas@mif.vu.lt


Abstract.   In this paper, we show that there is no irreducible polynomial \(f(x)\) of degree \(2p\) (\(p\geq5\) is a prime number) over \({\mathbb Q}\) whose three distinct roots sum up to zero. This extends some earlier results on linear relations between three algebraic numbers. In particular, let \(d\) be the smallest positive integer not a multiple of \(3\), for which there exists an irreducible polynomial \(f(x)\) of degree \(d\) whose three distinct roots add up to zero. In 2015, Dubickas and Jankauskas found that \(10\leq d \leq 20\). As a corollary, we show that it is either \(d=16\) or \(d=20\).

2020 Mathematics Subject Classification.   11R32, 11F05, 12F10, 20B35

Key words and phrases.   Linear relations between polynomial roots, non-trivial additive relations between algebraic conjugates, transitive permutation groups.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.04


References:

  1. G. Baron, M. Drmota, and M. Skałba, Polynomial relations between polynomial roots, J. Algebra 177 (1995), 827–846.
    MathSciNet    CrossRef

  2. O. Ben-Shimol, On Galois groups of prime degree polynomials with complex roots, Algebra Discrete Math. 2009 (2009), 99–107.
    MathSciNet

  3. W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge Univ. Press, 1911.

  4. K. Conrad, The origin of representation theory, Enseign Math. (2) 44 (1998), 361–392.
    MathSciNet

  5. J. D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag, New York, 1996.
    MathSciNet    CrossRef

  6. J. D. Dixon, Polynomials with nontrivial relations between their roots, Acta Arith. 82 (1997), 293–302.
    MathSciNet    CrossRef

  7. M. Drmota and M. Skałba, On multiplicative and linear independence of polynomial roots, In Contributions to general algebra, 7 (Vienna, 1990), Hölder-Pichler-Temsky, Vienna, 1991, 127–135.
    MathSciNet

  8. M. Drmota and M. Skałba, Relations between polynomial roots, Acta Arith. 71 (1995), 65–77.
    MathSciNet    CrossRef

  9. A. Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 (2002), 571–585.
    MathSciNet    Link

  10. A. Dubickas and C. J. Smyth, Polynomials with three distinct zeros summing to zero: Problem 11123, Amer. Math. Monthly 113 (2006), 941-942.

  11. A. Dubickas and J. Jankauskas, Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc. 30 (2015), 219–235.
    MathSciNet    CrossRef

  12. A. Dubickas, K. Hare, and J. Jankauskas, No two non-real conjugates of a Pisot number have the same imaginary part, Math. Comp. 86 (2017), 935–950.
    MathSciNet    CrossRef

  13. A. Dubickas, On sums of two and three roots of unity, J. Number Theory 192 (2018), 65–79.
    MathSciNet    CrossRef

  14. J. S. Ellenberg and W. Hardt Smyth's conjecture and a non-deterministic Hasse principle, .

  15. J. A. Gallian, The classification of groups of order 2p, Math. Mag. 74 (2001), 60–61.
    MathSciNet    Link

  16. K. Girstmair, Linear dependence of zeros of polynomials and construction of primitive elements, Manuscripta Math. 39 (1982), 81–97.
    MathSciNet    CrossRef

  17. K. Girstmair, Linear relations between roots of polynomials, Acta Arith. 89 (1999), 53–96.
    MathSciNet    CrossRef

  18. K. Girstmair, The Galois relation \(x_1=x_2+x_3\) and Fermat over finite fields, Acta Arith. 124 (2006), 357–370.
    MathSciNet    CrossRef

  19. K. Girstmair, The Galois relation \(x_1=x_2+x_3\) for finite simple groups, Acta Arith. 127 (2007), 301–303.
    MathSciNet    CrossRef

  20. K. Girstmair, The Galois relations \(x_1=x_2+x_3\) and \(x_1=x_2x_3\) for certain solvable groups, Ann. Sci. Math. Quebec 32 (2008), 171–174.
    MathSciNet

  21. W. Hardt and J. Yin, Linear relations among Galois conjugates over \(\mathbb{F}_q(t)\), Res. Number Theory 8 (2022), Paper No. 34.
    MathSciNet    CrossRef

  22. A. Hujdurović, K. Kutnar, D. Marušič, and Š. Miklavič, Intersection density of transitive groups of certain degrees, Algebr. Comb. 5 (2022), 289–297.
    MathSciNet    CrossRef

  23. Y. Kitaoka, Notes on the distribution of roots modulo a prime of a polynomial, Unif. Distrib. Theory 12 (2017), 91–117.
    MathSciNet

  24. J. Klüners and G. Malle, A database for number fields, .

  25. V. A. Kurbatov, Galois extensions of prime degree and their primitive elements, Izv. Vysš. Ucebn. Zaved. Matematika 21 (1977), 61–66.
    MathSciNet

  26. F. Lalande, La relation linéaire \(a=b+c+\cdots+t\) entre les racines d'un polynôme, J. Théor. Nombres Bordeaux 19 (2007), 473–484.
    MathSciNet    CrossRef

  27. F. Lalande, À propos de la relation galoisienne \(x_1=x_2+x_3\), J. Theor. Nombres Bordeaux 22 (2010), 661–673.
    MathSciNet    CrossRef

  28. P. Potočnik and M. Šajna, A note on transitive permutation groups of degree twice a prime, Ars Math. Contemp. 1 (2008) 165–168.
    MathSciNet    CrossRef

  29. C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory 23 (1986), 243–254.
    MathSciNet    CrossRef

  30. P. Vaidyanathan, Representation theory, Lecture notes, IISER Bhopal.
    Link

Glasnik Matematicki Home Page