Glasnik Matematicki, Vol. 60, No. 2 (2025), 229-242. \( \)
LINEAR RELATIONS BETWEEN THREE ALGEBRAIC CONJUGATES OF DEGREE TWICE A PRIME
Paulius Virbalas
Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
e-mail:paulius.virbalas@mif.vu.lt
Abstract.
In this paper, we show that there is no irreducible polynomial \(f(x)\) of degree \(2p\) (\(p\geq5\) is a prime number) over \({\mathbb Q}\) whose three distinct roots sum up to zero. This extends some earlier results on linear relations between three algebraic numbers. In particular, let \(d\) be the smallest positive integer not a multiple of \(3\), for which there exists an irreducible polynomial \(f(x)\) of degree \(d\) whose three distinct roots add up to zero. In 2015, Dubickas and Jankauskas found that \(10\leq d \leq 20\). As a corollary, we show that it is either \(d=16\) or \(d=20\).
2020 Mathematics Subject Classification. 11R32, 11F05, 12F10, 20B35
Key words and phrases. Linear relations between polynomial roots, non-trivial additive
relations between algebraic conjugates, transitive permutation groups.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.2.04
References:
-
G. Baron, M. Drmota, and M. Skałba, Polynomial relations between polynomial roots, J. Algebra 177 (1995), 827–846.
MathSciNet
CrossRef
-
O. Ben-Shimol, On Galois groups of prime degree polynomials with complex roots, Algebra Discrete Math. 2009 (2009), 99–107.
MathSciNet
-
W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge Univ. Press, 1911.
-
K. Conrad, The origin of representation theory, Enseign Math. (2) 44 (1998), 361–392.
MathSciNet
-
J. D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag, New York, 1996.
MathSciNet
CrossRef
-
J. D. Dixon, Polynomials with nontrivial relations between their roots, Acta Arith. 82 (1997), 293–302.
MathSciNet
CrossRef
-
M. Drmota and M. Skałba, On multiplicative and linear independence of polynomial roots, In Contributions to general algebra, 7 (Vienna, 1990), Hölder-Pichler-Temsky, Vienna, 1991, 127–135.
MathSciNet
-
M. Drmota and M. Skałba, Relations between polynomial roots, Acta Arith. 71 (1995), 65–77.
MathSciNet
CrossRef
-
A. Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 (2002), 571–585.
MathSciNet
Link
-
A. Dubickas and C. J. Smyth, Polynomials with three distinct zeros summing to zero: Problem 11123, Amer. Math. Monthly 113 (2006), 941-942.
-
A. Dubickas and J. Jankauskas, Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc. 30 (2015), 219–235.
MathSciNet
CrossRef
-
A. Dubickas, K. Hare, and J. Jankauskas, No two non-real conjugates of a Pisot number have the same imaginary part, Math. Comp. 86 (2017), 935–950.
MathSciNet
CrossRef
-
A. Dubickas, On sums of two and three roots of unity, J. Number Theory 192 (2018), 65–79.
MathSciNet
CrossRef
-
J. S. Ellenberg and W. Hardt Smyth's conjecture and a non-deterministic Hasse principle, .
-
J. A. Gallian, The classification of groups of order 2p, Math. Mag. 74 (2001), 60–61.
MathSciNet
Link
-
K. Girstmair, Linear dependence of zeros of polynomials and construction of primitive elements, Manuscripta Math. 39 (1982), 81–97.
MathSciNet
CrossRef
-
K. Girstmair, Linear relations between roots of polynomials, Acta Arith. 89 (1999), 53–96.
MathSciNet
CrossRef
-
K. Girstmair, The Galois relation \(x_1=x_2+x_3\) and Fermat over finite fields, Acta Arith. 124 (2006), 357–370.
MathSciNet
CrossRef
-
K. Girstmair, The Galois relation \(x_1=x_2+x_3\) for finite simple groups, Acta Arith. 127 (2007), 301–303.
MathSciNet
CrossRef
-
K. Girstmair, The Galois relations \(x_1=x_2+x_3\) and \(x_1=x_2x_3\) for certain solvable groups, Ann. Sci. Math. Quebec 32 (2008), 171–174.
MathSciNet
-
W. Hardt and J. Yin, Linear relations among Galois conjugates over \(\mathbb{F}_q(t)\), Res. Number Theory 8 (2022), Paper No. 34.
MathSciNet
CrossRef
-
A. Hujdurović, K. Kutnar, D. Marušič, and Š. Miklavič, Intersection density of transitive groups of certain degrees, Algebr. Comb. 5 (2022), 289–297.
MathSciNet
CrossRef
-
Y. Kitaoka, Notes on the distribution of roots modulo a prime of a polynomial, Unif. Distrib. Theory 12 (2017), 91–117.
MathSciNet
-
J. Klüners and G. Malle, A database for number fields, .
-
V. A. Kurbatov, Galois extensions of prime degree and their primitive elements, Izv. Vysš. Ucebn. Zaved. Matematika 21 (1977), 61–66.
MathSciNet
-
F. Lalande, La relation linéaire \(a=b+c+\cdots+t\) entre les racines d'un polynôme, J. Théor. Nombres Bordeaux 19 (2007), 473–484.
MathSciNet
CrossRef
-
F. Lalande, À propos de la relation galoisienne \(x_1=x_2+x_3\), J. Theor. Nombres Bordeaux 22 (2010), 661–673.
MathSciNet
CrossRef
-
P. Potočnik and M. Šajna, A note on transitive permutation groups of degree twice a prime, Ars Math. Contemp. 1 (2008) 165–168.
MathSciNet
CrossRef
-
C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory 23 (1986), 243–254.
MathSciNet
CrossRef
-
P. Vaidyanathan, Representation theory, Lecture notes, IISER Bhopal.
Link
Glasnik Matematicki Home Page