Glasnik Matematicki, Vol. 60, No. 2 (2025), 207-227. \( \)

PAIR CORRELATION OF ZEROS OF DIRICHLET \(L\)-FUNCTIONS AND PROPORTION OF SIMPLE ZEROS

Ramu̅nas Garunkštis and Julija Paliulionytė

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
e-mail:ramunas.garunkstis@mif.vu.lt

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
e-mail:julija.paliulionyte@mif.stud.vu.lt


Abstract.   Baluyot, Goldston, Suriajaya, and Turnage-Butterbaugh obtained an unconditional form of Montgomery's theorem concerning pair correlation of zeros of the Riemann zeta function. They used it to prove that under certain assumptions at least 61.7 percent of the zeros are simple. In this paper, we obtain an analogous theorem for Dirichlet \(L\)-functions and apply it to prove a similar result regarding simple zeros of Dirichlet \(L\)-functions.

2020 Mathematics Subject Classification.   11M06

Key words and phrases.   Dirichlet \(L\)-functions, simple zeros, pair correlation


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.03


References:

  1. S. A. C. Baluyot, D. A. Goldston, A. I. Suriajaya and C. L. Turnage-Butterbaugh, An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta-function, Acta Arith. 214 (2024), 357–376.
    MathSciNet    CrossRef

  2. S. A. C. Baluyot, D. A. Goldston, A. I. Suriajaya and C. L. Turnage-Butterbaugh, Pair Correlation of Zeros of the Riemann Zeta Function I: Proportions of Simple Zeros and Critical Zeros, preprint.

  3. A. Y. Cheer and D. A. Goldston, Simple zeros of the Riemann zeta-function, Proc. Amer. Math. Soc. 118 (1993), 365–372.
    MathSciNet    CrossRef

  4. A. Fujii, Some observations concerning the distribution of the zeros of the zeta functions. I, in: Zeta functions in geometry, Adv. Stud. Pure Math. 21, Kinokuniya, Tokyo, 1992, 237–280.
    MathSciNet    CrossRef

  5. D. R. Heath-Brown, The density of zeros of Dirichlet's \(L\)-functions, Canadian J. Math. 31 (1979), 231–240.
    MathSciNet    CrossRef

  6. Y. Karabulut and C. Y. Yıldırım, Some analogues of pair correlation of zeta zeros, in: Exploring the Riemann zeta function, Springer, Cham, 2017, 113–179.
    MathSciNet

  7. T. Khale, An explicit Vinogradov-Korobov zero-free region for Dirichlet \(L\)-functions, Q. J. Math. 75 (2024), 299–332.
    MathSciNet    CrossRef

  8. H. L. Montgomery, The pair correlation of zeros of the zeta function, in: Analytic number theory, Proc. Sympos. Pure Math. XXIV, Amer. Math. Soc., Providence, RI, 1973, 181–193.
    MathSciNet

  9. H. L. Montgomery, Distribution of the zeros of the Riemann zeta function, in: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, Canad. Math. Congr., Montreal, QC, 1975, 379–381.
    MathSciNet

  10. H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory III,

  11. H. L. Montgomery and R. C. Vaughan, Multiplicative number theory I. Classical theory, Cambridge Stud. Adv. Math. 97, Cambridge University Press, Cambridge, 2007.
    MathSciNet

  12. K. Sono, A note on simple zeros of primitive Dirichlet \(L\)-functions, Bull. Aust. Math. Soc. 93 (2016), 19–30.
    MathSciNet    CrossRef

  13. K. M. Tsang, The large values of the Riemann zeta-function, Mathematika 40 (1993), 203–214.
    MathSciNet    CrossRef

  14. C. Y. Yıldırım, The pair correlation of zeros of Dirichlet \(L\)-functions and primes in arithmetic progressions, Manuscripta Math. 72 (1991), 325–334.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page