Glasnik Matematicki, Vol. 60, No. 2 (2025), 197-206. \( \)

DEGENERATE EISENSTEIN SERIES ON THE SYMPLECTIC GROUP OF RANK TWO REVISITED BY A NEW METHOD FOR PROVING HOLOMORPHY

Neven Grbac

Juraj Dobrila University of Pula, 52100 Pula, Croatia
e-mail:neven.grbac@unipu.hr


Abstract.   In a recent preprint entitled “Holomorphy of Eisenstein series – a new method and applications in the case of the general linear group”, the author has developed a new method for proving holomorphy of degenerate Eisenstein series, based on the Franke filtration of spaces of automorphic forms. In this paper, the method is applied in the case of degenerate Eisenstein series on the symplectic group of rank two. Although the analytic properties of Eisenstein series in that case are already known, the goal is to exhibit the method in a simple setting, in which all additional technical details are peeled off.

2020 Mathematics Subject Classification.   11F70, 22E55

Key words and phrases.   Eisenstein series, Franke filtration, method for proving holomorphy, symplectic group of rank two


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.02


References:

  1. A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in: Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State University, Corvallis, Ore., Part 1, Amer. Math. Soc., Providence, RI, 1979, 189–207.
    MathSciNet

  2. J. Franke, Harmonic analysis in weighted \(L_2\)-spaces, Ann. Sci. École Norm. Sup. (4) 31 (1998), 181–279.
    MathSciNet    CrossRef

  3. J. Franke and J. Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), 765–790.
    MathSciNet    CrossRef

  4. D. Ginzburg and D. Soudry, Poles of Eisenstein series on general linear groups, induced from two Speh representations, preprint available at https://arxiv.org/abs/2410.23026 (Oct 2024), 39 pp.

  5. N. Grbac, The Franke filtration of the spaces of automorphic forms on the symplectic group of rank two, Mem. Amer. Math. Soc. 313 (2025), no. 1592.
    MathSciNet    Link

  6. N. Grbac, Holomorphy of Eisenstein series – a new method and applications in the case of the general linear group, preprint (2025), 22 pp., http://tania.unipu.hr/~negrbac/Holo_Eis_ser_Submitted.pdf.

  7. M. Hanzer and G. Muić, Degenerate Eisenstein series for \(Sp(4)\), J. Number Theory 146 (2015), 310–342.
    MathSciNet    CrossRef

  8. M. Hanzer and G. Muić, On the images and poles of degenerate Eisenstein series for \(GL(n,\mathbb{A}_\mathbb{Q})\) and \(GL(n,\mathbb{R}) \), Amer. J. Math. 137 (2015), 907–951.
    MathSciNet    CrossRef

  9. H. H. Kim, The residual spectrum of \({Sp}_4\), Compositio Math. 99 (1995), 129–151.
    MathSciNet

  10. H. H. Kim, Automorphic \(L\)-functions, in: Lectures on automorphic \(L\)-functions, Fields Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, 97–201.
    MathSciNet

  11. T. Kon-No, The residual spectrum of \({Sp}(2)\), Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 204–207.
    MathSciNet    CrossRef

  12. R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., Vol. 544, Springer-Verlag, Berlin-New York, 1976.
    MathSciNet

  13. C. Mœglin and J. -L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Math., 113, Cambridge University Press, Cambridge, 1995.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page