Glasnik Matematicki, Vol. 60, No. 2 (2025), 183-196. \( \)

SOME CONSTRUCTIONS OF LCD CODES OVER \({\mathbb{Z}}_4\)

Ana Grbac and Andrea Švob

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:abaric@math.uniri.hr

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:asvob@math.uniri.hr


Abstract.   In this paper, we consider linear codes with complementary duals over the ring of integers modulo 4. These codes are defined as linear codes that intersect their duals trivially and shortly called LCD codes. We focus on some constructions of LCD codes using the adjacency matrices of two-class association schemes.

2020 Mathematics Subject Classification.   05E30, 94B05

Key words and phrases.   LCD code, \({\mathbb{Z}}_4\)-code, association scheme, strongly regular graph, doubly regular tournament.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.2.01


References:

  1. W. Bosma, J. Cannon, Handbook of Magma functions, Department of Mathematics, University of Sydney, 1994, .

  2. D. Crnković, A. Grbac and A. Švob, Formally self-dual LCD codes from two-class association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 183–200.
    MathSciNet    CrossRef

  3. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl. 1973, 10.
    MathSciNet

  4. S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017.
    MathSciNet    CrossRef

  5. S. T. Dougherty, J-L. Kim and P. Solé, Double circulant codes from two-class association schemes, Adv. Math. Commun. 1 (2007), 45–64.
    MathSciNet    CrossRef

  6. S. T. Dougherty, J. Gildea, A. Korban and A. M. Roberts, Codes over a ring of order 32 with two Gray maps, Finite Fields Appl. 95 (2024), paper no. 102384.
    MathSciNet    CrossRef

  7. P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), 85–107.
    MathSciNet    CrossRef

  8. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available online at . Accessed on 2025-06-04.

  9. D. G. Higman, Coherent configuration, Geometriae Dedicata 4 (1975), 1–32.
    MathSciNet    CrossRef

  10. D. Huang, M. Shi and P. Solé, Double circulant self-dual and LCD codes over \({\mathbb{Z}}_{p^2}\), Internat. J. Found. Comput. Sci. 30 (2019), 407–416.
    MathSciNet    CrossRef

  11. W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
    MathSciNet    CrossRef

  12. W. Fish, J. D. Key and E. Mwambene, Special LCD codes from products of graphs, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 553–579.
    MathSciNet    CrossRef

  13. Z. Liu, Galois LCD codes over rings, Adv. Math. Commun. 18 (2024), 91–104.
    MathSciNet    CrossRef

  14. X. Liu, On the characterization of cyclic codes over two classes of rings, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), 413–422.
    MathSciNet    CrossRef

  15. X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl. 34 (2015), 1–19.
    MathSciNet    CrossRef

  16. J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337–342.
    MathSciNet    CrossRef

  17. G. H. Norton and A. Sǎlǎgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra Eng. Commun. Comput. 10 (2000), 489–506.
    MathSciNet    CrossRef

  18. K. B. Reid and E. Brown, Doubly regular tournaments are equivalent to skew Hadamard matrices, J. Combinatorial Theory Ser. A 12 (1972), 332–338.
    MathSciNet    CrossRef

  19. N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), 345–347.
    MathSciNet    CrossRef

  20. M. Shi, D. Huang, L. Sok and P. Solé, Double circulant LCD codes over \({\mathbb{Z}}_4\), Finite Fields Appl. 58 (2019), 133–144.
    MathSciNet    CrossRef

  21. M. Shi, D. Huang, L. Sok and P. Solé, Double circulant self-dual and LCD codes over Galois rings, Adv. Math. Commun. 13 (2019), 171–183.
    MathSciNet    CrossRef

  22. D. Suprijanto, Linear codes and cyclic codes over finite rings and their generalizations: a survey, Electron. J. Graph Theory Appl. (EJGTA) 11 (2023), 467–490.
    MathSciNet

  23. A. Švob, LCD codes from equitable partitions of association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 889–896.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page