Glasnik Matematicki, Vol. 60, No. 2 (2025), 183-196. \( \)
SOME CONSTRUCTIONS OF LCD CODES OVER \({\mathbb{Z}}_4\)
Ana Grbac and Andrea Švob
Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:abaric@math.uniri.hr
Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:asvob@math.uniri.hr
Abstract.
In this paper, we consider linear codes with complementary duals over the ring of integers modulo 4. These codes are defined as linear codes that intersect their duals trivially and shortly called LCD codes. We focus on some constructions of LCD codes using the adjacency matrices of two-class association schemes.
2020 Mathematics Subject Classification. 05E30, 94B05
Key words and phrases. LCD code, \({\mathbb{Z}}_4\)-code, association scheme, strongly regular graph, doubly regular tournament.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.60.2.01
References:
-
W. Bosma, J. Cannon, Handbook of Magma functions, Department of Mathematics, University of Sydney, 1994, .
-
D. Crnković, A. Grbac and A. Švob, Formally self-dual LCD codes from two-class association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 183–200.
MathSciNet
CrossRef
-
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl. 1973, 10.
MathSciNet
-
S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017.
MathSciNet
CrossRef
-
S. T. Dougherty, J-L. Kim and P. Solé, Double circulant codes from two-class association schemes, Adv. Math. Commun. 1 (2007), 45–64.
MathSciNet
CrossRef
-
S. T. Dougherty, J. Gildea, A. Korban and A. M. Roberts, Codes over a ring of order 32 with two Gray maps, Finite Fields Appl. 95 (2024), paper no. 102384.
MathSciNet
CrossRef
-
P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), 85–107.
MathSciNet
CrossRef
-
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available online at . Accessed on 2025-06-04.
-
D. G. Higman, Coherent configuration, Geometriae Dedicata 4 (1975), 1–32.
MathSciNet
CrossRef
-
D. Huang, M. Shi and P. Solé, Double circulant self-dual and LCD codes over \({\mathbb{Z}}_{p^2}\), Internat. J. Found. Comput. Sci. 30 (2019), 407–416.
MathSciNet
CrossRef
-
W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
MathSciNet
CrossRef
-
W. Fish, J. D. Key and E. Mwambene, Special LCD codes from products of graphs, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 553–579.
MathSciNet
CrossRef
-
Z. Liu, Galois LCD codes over rings, Adv. Math. Commun. 18 (2024), 91–104.
MathSciNet
CrossRef
-
X. Liu, On the characterization of cyclic codes over two classes of rings, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), 413–422.
MathSciNet
CrossRef
-
X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl. 34 (2015), 1–19.
MathSciNet
CrossRef
-
J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337–342.
MathSciNet
CrossRef
-
G. H. Norton and A. Sǎlǎgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra Eng. Commun. Comput. 10 (2000), 489–506.
MathSciNet
CrossRef
-
K. B. Reid and E. Brown, Doubly regular tournaments are equivalent to skew Hadamard matrices, J. Combinatorial Theory Ser. A 12 (1972), 332–338.
MathSciNet
CrossRef
-
N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), 345–347.
MathSciNet
CrossRef
-
M. Shi, D. Huang, L. Sok and P. Solé, Double circulant LCD codes over \({\mathbb{Z}}_4\), Finite Fields Appl. 58 (2019), 133–144.
MathSciNet
CrossRef
-
M. Shi, D. Huang, L. Sok and P. Solé, Double circulant self-dual and LCD codes over Galois rings, Adv. Math. Commun. 13 (2019), 171–183.
MathSciNet
CrossRef
-
D. Suprijanto, Linear codes and cyclic codes over finite rings and their generalizations: a survey, Electron. J. Graph Theory Appl. (EJGTA) 11 (2023), 467–490.
MathSciNet
-
A. Švob, LCD codes from equitable partitions of association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 889–896.
MathSciNet
CrossRef
Glasnik Matematicki Home Page