Glasnik Matematicki, Vol. 60, No. 1 (2025), 73-87. \( \)

ON 2MP-, MP2-, AND CMP2-INVERSES IN \(\ast\)-RINGS

Janko Marovt and Dijana Mosić

University of Maribor, Faculty of Economics and Business, Razlagova 14, SI-2000 Maribor, Slovenia,, and, IMFM, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
e-mail:janko.marovt@um.si

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia
e-mail:dijana@pmf.ni.ac.rs


Abstract.   The notions of a 2MP-inverse, a MP2-inverse, and a C2MP-inverse are extended from the set of all \(m\times n\) complex matrices to the set \(\mathcal{R}^{\dagger}\) of all Moore-Penrose invertible elements in a unital \(\ast \)-ring \(\mathcal{R}\). We study properties of these hybrid generalized inverses and thus generalize some known results. We apply the \((b,c)\)-inverse of \(a\in \mathcal{R}^{\dagger}\) to determine a special case of a 2MP- or MP2-inverse of \(a\) and then use these inverses to solve certain equations which lead to least-squares solutions and the normal equation.

2020 Mathematics Subject Classification.   15A09, 15A10, 17C27

Key words and phrases.   Outer generalized inverse, 2MP-inverse, MP2-inverse, C2MP-inverse, \(\ast\)-ring


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.60.1.05


References:

  1. D. S. Djordjević, D. S. Rakić and J. Marovt, Minus partial order in Rickart rings, Publ. Math. Debrecen 87 (2015), 291–305.
    MathSciNet    CrossRef

  2. M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012), 1909–1923.
    MathSciNet    CrossRef

  3. M. V. Hernández, M. B. Lattanzi and N. Thome, On 2MP-, MP2- and C2MP-inverses for rectangular matrices, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 116 (2022), article 156.
    MathSciNet    CrossRef

  4. J. Marovt, D. S. Rakić and D. S. Djordjević, Star, left-star, and right-star partial orders in Rickart \(\ast \)-rings, Linear Multilinear Algebra 63 (2015), 343–365.
    MathSciNet    CrossRef

  5. J. Marovt and D. Mosić, On G-S and C-S inverses in \(\ast\)-rings, Comm. Algebra 52 (2024), No. 12, 5320–5338.
    MathSciNet    CrossRef

  6. M. Mehdipour and A. Salemi, On a new generalized inverse of matrices, Linear Multilinear Algebra 66 (2018), 1046–1053.
    MathSciNet    CrossRef

  7. D. Mosić and P. S. Stanimirović, Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021), 45–72.
    MathSciNet    CrossRef

  8. P. S. Stanimirović, D. Mosić and Y. Wei, Least squares properties of generalized inverses, Commun. Math. Res. 37 (2021), 421–447.
    MathSciNet    CrossRef

  9. D. Stojanović and D. Mosić, Inner-gMP and gMP-inner inverses, Hacet. J. Math. Stat. 53 (2024), 1312–1325.
    MathSciNet

Glasnik Matematicki Home Page