Glasnik Matematicki, Vol. 59, No. 2 (2024), 277-298. \( \)

AT MOST ONE SOLUTION TO \(a^x + b^y = c^z\) FOR SOME RANGES OF \(a\), \(b\), \(c\)

Robert Styer

Department of Mathematics, Villanova University, Villanova, PA, USA
e-mail:robert.styer@villanova.edu


Abstract.   For fixed coprime positive integers \(a\), \(b\), and \(c\) with \(\min(a, b, c) > 1\), we consider the number of solutions in positive integers \((x, y, z)\) for the purely exponential Diophantine equation \(a^x + b^y = c^z\). Apart from a list of known exceptions, a conjecture published in 2016 claims that this equation has at most one solution in positive integers \(x\), \(y\), and \(z\). We show that this is true for some ranges of \(a\), \(b\), \(c\), for instance, when \(1 < a,b < 3600\) and \(c<10^{10}\). The conjecture also holds for small pairs \((a,b)\) independent of \(c\), where \(2 \le a,b \le 10\) with \(\gcd(a,b)=1\). We show that the Pillai equation \(a^x - b^y = r > 0\) has at most one solution (with a known list of exceptions) when \(2 \le a,b \le 3600\) (with \(\gcd(a,b)=1\)). Finally, the primitive case of the Jeśmanowicz conjecture holds when \(a \le 10^6\) or when \(b \le 10^6\). This work highlights the power of some ideas of Miyazaki and Pink and the usefulness of a theorem by Scott.

2020 Mathematics Subject Classification.   11D61

Key words and phrases.   Purely exponential Diophantine, number of solutions, Jeśmanowicz conjecture, Pillai equation


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.2.02


References:

  1. M. A. Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), 897–922.
    MathSciNet    CrossRef   

  2. M. A. Bennett and N. Billerey, Sums of two \(S\)-units via Frey-Hellegouarch curves, Math. Comp. 86 (2017), 1375–1401.
    MathSciNet    CrossRef   

  3. F. Beukers and H. P. Schlickewei, The equation \(x+y=1\) in finitely generated groups, Acta Arith. 78 (1996), 189–199.
    MathSciNet    CrossRef   

  4. Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122.
    MathSciNet    CrossRef   

  5. Y. Bugeaud, Linear forms in logarithms and applications, European Mathematical Society (EMS), Zürich, 2018.
    MathSciNet    CrossRef   

  6. V. A. Dem'janenko, On Jeśmanowicz's problem for Pythagorean numbers. Izv. vuzov. 5, (1965), 52–56 (in Russian).

  7. A. Gelfond, Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier, Rec. Math. [Mat. Sbornik] N.S. 7(49) (1940), 7–25.
    MathSciNet

  8. R. K. Guy, C. B. Lacampagne and J. L. Selfridge, Primes at a glance, Math. Comp. 48 (1987), 183–202.
    MathSciNet    CrossRef   

  9. Q. Han and P. Yuan, A note on Jeśmanowicz' conjecture, Acta Math. Hungar. 156 (2018), 220–225.
    MathSciNet    CrossRef   

  10. N. Hirata-Kohno, \(S\)-unit equations and integer solutions to exponential Diophantine equations, Analytic number theory and surrounding areas 2006, Kyoto RIMS Kokyuroku, 2006, 92–97.

  11. Y. Hu and M. Le, A note on ternary purely exponential diophantine equations, Acta Arith. 171 (2015), 173–182.
    MathSciNet    CrossRef   

  12. Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential diophantine equations, J. Number Theory 183 (2018), 62–73.
    MathSciNet    CrossRef   

  13. Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential Diophantine equations II, Publ. Math. Debrecen 95 (2019), 335–354.
    MathSciNet    CrossRef   

  14. R. von Känel and B. Matschke, Solving \(S\)-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via the Shimura-Taniyama conjecture, Mem. Amer. Math. Soc. 286 (2023), vi+142.
    MathSciNet    CrossRef   

  15. M.-H. Le and T. Miyazaki, An application of \(abc\)-conjecture to a Conjecture of Scott and Styer on purely exponential equations, arXiv:2407.07407.

  16. M. Le, R. Scott and R. Styer, A survey on the ternary purely exponential diophantine equation \(a^x+b^y=c^z\), Surv. Math. Appl. 14 (2019), 109–140.
    MathSciNet

  17. M.-H. Le, R. Scott and R. Styer, On a conjecture concerning the number of solutions to \(ax + by = cz\), II, Glas. Mat. Ser. III 59(79) (2024), 299–312.
    CrossRef

  18. M. Le and R. Styer, On a conjecture concerning the number of solutions to \(a^x+b^y=c^z\), Bull. Aust. Math. Soc. 108 (2023), 40–49.
    MathSciNet    CrossRef   

  19. W. D. Lu, On Pythagorean numbers \(4n^2-1\), \(4n\) and \(4n^2+1\), J. Sichuan Univ. Nat. Sci. 5 (1959), 39–42.

  20. K. Mahler, Zur Approximation algebraischer Zahlen. I, Math. Ann. 107 (1933), 691–730.
    MathSciNet    CrossRef   

  21. R. von Känel and B. Matschke, Solving \(S\)-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via the Shimura-Taniyama conjecture, Mem. Amer. Math. Soc. 286 (2023), vi+142.
    MathSciNet    CrossRef   

  22. T. Miyazaki, Contributions to some conjectures on a ternary exponential Diophantine equation, Acta Arith. 186 (2018), 1–36.
    MathSciNet    CrossRef   

  23. T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables, Amer. J. Math. 146 (2024), 295–369.
    MathSciNet

  24. T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables II, Res. Number Theory 10 (2024), Paper No. 36.
    MathSciNet

  25. T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two unknowns, III, (2024), arXiv:2403.20037.
    Link

  26. S. S. Pillai, On the equation \(2^x-3^y=2^X+3^Y\), Bull. Calcutta Math. Soc. 37 (1945), 15–20.
    MathSciNet

  27. W. A. Stein et al, Sage Mathematics Software (Version 9.5), The Sage Development Team, (2022).
    Link

  28. R. Scott, On the equations \(p^x-b^y=c\) and \(a^x+b^y=c^z\), J. Number Theory 44 (1993), 153–165.
    MathSciNet    CrossRef   

  29. R. Scott and R. Styer, On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases, J. Number Theory 105 (2004), 212–234.
    MathSciNet    CrossRef   

  30. R. Scott and R. Styer, On the generalized Pillai equation \(\pm a^x\pm b^y=c\), J. Number Theory 118 (2006), 236–265.
    MathSciNet    CrossRef   

  31. R. Scott and R. Styer, On the generalized Pillai equation \(\pm a^x\pm b^y=c\), revised June 26, 2009.
    Link

  32. R. Scott and R. Styer, Number of solutions to \(a^x+b^y=c^z\), Publ. Math. Debrecen 88 (2016), 131–138.
    MathSciNet    CrossRef   

  33. R. Scott and R. Styer, Two terms with known prime divisors adding to a power, Publ. Math. Debrecen 93 (2018), 457–473.
    MathSciNet    CrossRef   

  34. R. Scott and R. Styer, Two terms with known prime divisors adding to a power: revised with appendices, (2024), arXiv:2003.06689.
    Link

  35. M. Sudo, On the exponential equations \(a^x - b^y = C\), (\(1 \le C \le 300\)), J. Fac. Sci. Tech., Seikei Univ. 42 (2005), 57–62.

  36. N. Terai, On Jeśmanowicz' conjecture concerning primitive Pythagorean triples, J. Number Theory 141 (2014), 316–323.
    MathSciNet    CrossRef   

Glasnik Matematicki Home Page