Glasnik Matematicki, Vol. 59, No. 2 (2024), 277-298. \( \)
AT MOST ONE SOLUTION TO \(a^x + b^y = c^z\) FOR SOME RANGES OF \(a\), \(b\), \(c\)
Robert Styer
Department of Mathematics, Villanova University, Villanova, PA, USA
e-mail:robert.styer@villanova.edu
Abstract.
For fixed coprime positive integers \(a\), \(b\), and \(c\) with \(\min(a, b, c) > 1\), we consider the number of solutions in positive integers \((x, y, z)\) for the purely exponential Diophantine equation \(a^x + b^y = c^z\). Apart from a list of known exceptions, a conjecture published in 2016 claims that this equation has at most one solution in positive integers \(x\), \(y\), and \(z\). We show that this is true for some ranges of \(a\), \(b\), \(c\), for instance, when \(1 < a,b < 3600\) and \(c<10^{10}\). The conjecture also holds for small pairs \((a,b)\) independent of \(c\), where \(2 \le a,b \le 10\) with \(\gcd(a,b)=1\). We show that the Pillai equation \(a^x - b^y = r > 0\) has at most one solution (with a known list of exceptions) when \(2 \le a,b \le 3600\) (with \(\gcd(a,b)=1\)). Finally, the primitive case of the Jeśmanowicz conjecture holds when \(a \le 10^6\) or when \(b \le 10^6\). This work highlights the power of some ideas of Miyazaki and Pink and the usefulness of a theorem by Scott.
2020 Mathematics Subject Classification. 11D61
Key words and phrases. Purely exponential Diophantine, number of solutions, Jeśmanowicz conjecture, Pillai equation
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.02
References:
-
M. A. Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), 897–922.
MathSciNet
CrossRef
-
M. A. Bennett and N. Billerey, Sums of two \(S\)-units via Frey-Hellegouarch curves, Math. Comp. 86 (2017), 1375–1401.
MathSciNet
CrossRef
-
F. Beukers and H. P. Schlickewei, The equation \(x+y=1\) in finitely generated groups, Acta Arith. 78 (1996), 189–199.
MathSciNet
CrossRef
-
Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122.
MathSciNet
CrossRef
-
Y. Bugeaud, Linear forms in logarithms and applications, European Mathematical Society (EMS), Zürich, 2018.
MathSciNet
CrossRef
-
V. A. Dem'janenko, On Jeśmanowicz's problem for Pythagorean numbers. Izv. vuzov. 5, (1965), 52–56 (in Russian).
-
A. Gelfond, Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier, Rec. Math. [Mat. Sbornik] N.S. 7(49) (1940), 7–25.
MathSciNet
-
R. K. Guy, C. B. Lacampagne and J. L. Selfridge, Primes at a glance, Math. Comp. 48 (1987), 183–202.
MathSciNet
CrossRef
-
Q. Han and P. Yuan, A note on Jeśmanowicz' conjecture, Acta Math. Hungar. 156 (2018), 220–225.
MathSciNet
CrossRef
-
N. Hirata-Kohno, \(S\)-unit equations and integer solutions to exponential Diophantine equations, Analytic number theory and surrounding areas 2006, Kyoto RIMS Kokyuroku, 2006, 92–97.
-
Y. Hu and M. Le, A note on ternary purely exponential diophantine equations, Acta Arith. 171 (2015), 173–182.
MathSciNet
CrossRef
-
Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential diophantine equations, J. Number Theory 183 (2018), 62–73.
MathSciNet
CrossRef
-
Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential Diophantine equations II, Publ. Math. Debrecen 95 (2019), 335–354.
MathSciNet
CrossRef
-
R. von Känel and B. Matschke, Solving \(S\)-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via the Shimura-Taniyama conjecture, Mem. Amer. Math. Soc. 286 (2023), vi+142.
MathSciNet
CrossRef
-
M.-H. Le and T. Miyazaki, An application of \(abc\)-conjecture to a Conjecture of Scott and Styer on purely exponential equations, arXiv:2407.07407.
-
M. Le, R. Scott and R. Styer, A survey on the ternary purely exponential diophantine equation \(a^x+b^y=c^z\), Surv. Math. Appl. 14 (2019), 109–140.
MathSciNet
-
M.-H. Le, R. Scott and R. Styer, On a conjecture concerning the number of solutions to \(ax + by = cz\), II, Glas. Mat. Ser. III 59(79) (2024), 299–312.
CrossRef
-
M. Le and R. Styer, On a conjecture concerning the number of solutions to \(a^x+b^y=c^z\), Bull. Aust. Math. Soc. 108 (2023), 40–49.
MathSciNet
CrossRef
-
W. D. Lu, On Pythagorean numbers \(4n^2-1\), \(4n\) and \(4n^2+1\), J. Sichuan Univ. Nat. Sci. 5 (1959), 39–42.
-
K. Mahler, Zur Approximation algebraischer Zahlen. I, Math. Ann. 107 (1933), 691–730.
MathSciNet
CrossRef
-
R. von Känel and B. Matschke, Solving \(S\)-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via the Shimura-Taniyama conjecture, Mem. Amer. Math. Soc. 286 (2023), vi+142.
MathSciNet
CrossRef
-
T. Miyazaki, Contributions to some conjectures on a ternary exponential Diophantine equation, Acta Arith. 186 (2018), 1–36.
MathSciNet
CrossRef
-
T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables, Amer. J. Math. 146 (2024), 295–369.
MathSciNet
-
T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables II, Res. Number Theory 10 (2024), Paper No. 36.
MathSciNet
-
T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two unknowns, III, (2024), arXiv:2403.20037.
Link
-
S. S. Pillai, On the equation \(2^x-3^y=2^X+3^Y\), Bull. Calcutta Math. Soc. 37 (1945), 15–20.
MathSciNet
-
W. A. Stein et al, Sage Mathematics Software (Version 9.5), The Sage Development Team, (2022).
Link
-
R. Scott, On the equations \(p^x-b^y=c\) and \(a^x+b^y=c^z\), J. Number Theory 44 (1993), 153–165.
MathSciNet
CrossRef
-
R. Scott and R. Styer, On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases, J. Number Theory 105 (2004), 212–234.
MathSciNet
CrossRef
-
R. Scott and R. Styer, On the generalized Pillai equation \(\pm a^x\pm b^y=c\), J. Number Theory 118 (2006), 236–265.
MathSciNet
CrossRef
-
R. Scott and R. Styer, On the generalized Pillai equation \(\pm a^x\pm b^y=c\), revised June 26, 2009.
Link
-
R. Scott and R. Styer, Number of solutions to \(a^x+b^y=c^z\), Publ. Math. Debrecen 88 (2016), 131–138.
MathSciNet
CrossRef
-
R. Scott and R. Styer, Two terms with known prime divisors adding to a power, Publ. Math. Debrecen 93 (2018), 457–473.
MathSciNet
CrossRef
-
R. Scott and R. Styer, Two terms with known prime divisors adding to a power: revised with appendices, (2024), arXiv:2003.06689.
Link
-
M. Sudo, On the exponential equations \(a^x - b^y = C\), (\(1 \le C \le 300\)), J. Fac. Sci. Tech., Seikei Univ. 42 (2005), 57–62.
-
N. Terai, On Jeśmanowicz' conjecture concerning primitive Pythagorean triples, J. Number Theory 141 (2014), 316–323.
MathSciNet
CrossRef
Glasnik Matematicki Home Page