Glasnik Matematicki, Vol. 59, No. 1 (2024), 213-258. \( \)
AN APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATOR OF DRIFT PARAMETERS IN A MULTIDIMENSIONAL DIFFUSION MODEL
Miljenko Huzak, Snježana Lubura Strunjak and Andreja Vlahek Štrok
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:miljenko.huzak@math.hr
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:snjezana.lubura.strunjak@math.hr
Faculty of Chemical Engineering and Technology, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:avlahek@fkit.hr
Abstract.
For a fixed \(T\) and \(k \geq 2\), a \(k\)-dimensional vector stochastic differential equation \(dX_t=\mu(X_t, \theta)\,dt+\nu(X_t)\,dW_t,\) is studied over a time interval \([0,T]\). Vector of drift parameters \(\theta\) is unknown. The dependence in \(\theta\) is in general nonlinear. We prove that the difference between approximate maximum likelihood estimator of the drift parameter \(\overline{\theta}_n\equiv \overline{\theta}_{n,T}\) obtained from discrete observations \((X_{i\Delta_n}, 0 \leq i \leq n)\) and maximum likelihood estimator \(\hat{\theta}\equiv \hat{\theta}_T\) obtained from continuous observations \((X_t, 0\leq t\leq T)\), when \(\Delta_n=T/n\) tends to zero, converges stably in law to the mixed normal random vector with covariance matrix that depends on \(\hat{\theta}\) and on path \((X_t, 0 \leq t\leq T)\). The uniform ellipticity of diffusion matrix \(S(x)=\nu(x)\nu(x)^T\) emerges as the main assumption on the diffusion coefficient function.
2020 Mathematics Subject Classification. 62M05, 62F12, 60J60
Key words and phrases. Multidimensional diffusion processes, maximum likelihood estimation, uniform ellipticity, asymptotic mixed normality
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.10
References:
-
Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach, Econometrica 70 (2002), 223–262.
MathSciNet
CrossRef
-
Y. Aït-Sahalia, Closed-form likelihood expansions for multivariate diffusions, Ann. Statist. 36 (2008), 906–937.
MathSciNet
CrossRef
-
A. Alfonsi, B. Jourdain and A. Kohatsu-Higa, Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme, Electron. J. Probab. 20 (2015), no. 70, 31 pp.
MathSciNet
CrossRef
-
M. Barczy and G. Pap, Asymptotic properties of maximum-likelihood estimators for Heston models based on continuous time observations, Statistics 50 (2016), 389–417.
MathSciNet
CrossRef
-
I. V. Basawa and B. L. S. Prakasa Rao, Statistical inference for stochastic processes, Academic Press, London, 1980.
MathSciNet
-
P. Billingsley, Convergence of probability measures, John Wiley & Sons, New York, 1999.
MathSciNet
CrossRef
-
Y. G. Borisovich, N. M. Bliznyakov, T. N. Fomenko and Y. A. Izrailevich, Introduction to differential and algebraic topology, Kluwer Academic Publishers Group, Dordrecht, 1995.
MathSciNet
CrossRef
-
P. J. Brockwell and R. A. Davis, Time series: theory and methods, Springer, New York, 2006.
MathSciNet
-
J. Chang and S. X. Chen, On the approximate maximum likelihood estimation for diffusion processes, Ann. Statist. 39 (2011), 2820–2851.
MathSciNet
CrossRef
-
Q. Clairon and A. Samson, Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations, Stat. Inference Stoch. Process. 23 (2020), 105–127.
MathSciNet
CrossRef
-
R. Durrett, Probability: theory and examples, Cambridge University Press, Cambridge, 2010.
MathSciNet
CrossRef
-
J. E. Gentle, Matrix algebra, Springer, New York, 2007.
MathSciNet
CrossRef
-
E. Gobet, Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach, Bernoulli 7 (2001), 899–912.
MathSciNet
CrossRef
-
E. Gobet, LAN property for ergodic diffusions with discrete observations, Ann. Inst. Henri Poincaré Probab. Stat. 38 (2002), 711–737.
MathSciNet
CrossRef
-
E. Gobet and R. Munos, Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control, SIAM J. Control Optim. 43 (2005), 1676–1713.
MathSciNet
CrossRef
-
M. Huzak, A general theorem on approximate maximum likelihood estimation, Glas. Mat. Ser. III 36(56) (2001), 139–153.
MathSciNet
-
M. Huzak, Estimating a class of diffusions from discrete observations via approximate maximum likelihood method, Statistics 52 (2018), 239–272.
MathSciNet
CrossRef
-
J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, in Séminaire de Probabilitiés, Springer, Berlin, 1997, 232–246.
MathSciNet
CrossRef
-
J. Jacod and P. Protter, Discretization of processes, Springer, Heidelberg, 2012.
MathSciNet
CrossRef
-
R. Khasminskii, Stochastic stability of differential equations, Springer, Heidelberg, 2012.
MathSciNet
CrossRef
-
P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin, 1992.
MathSciNet
CrossRef
-
H. Lee and G. Trutnau, Existence and uniqueness of (infinitesimally) invariant measures for second order partial differential operators on Euclidean space, J. Math. Anal. Appl. 507 (2022), no. 125778, 31 pp.
MathSciNet
CrossRef
-
C. Li, Maximum-likelihood estimation for diffusion processes via closed-form density expansions, Ann. Statist. 41 (2013), 1350–1380.
MathSciNet
CrossRef
-
R. S. Liptser and A. N. Shiryaev, Statistics of random processes: General theory, Springer-Verlag, Berlin, 2001.
MathSciNet
-
S. Lubura Strunjak, Local asymptotic properties of approximate maximum likelihood estimator of drift parameters in diffusion model, Ph.D. thesis, University of Zagreb, 2015 (in Croatian).
-
S. Lubura Strunjak and M. Huzak, Local asymptotic mixed normality of approximate maximum likelihood estimator of drift parameters in diffusion model, Glas. Mat. Ser. III 52(72) (2017), 377–410.
MathSciNet
CrossRef
-
B. Øksendal, Stochastic differential equations, Springer-Verlag, Berlin, 2003.
MathSciNet
CrossRef
-
D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin, 1999.
MathSciNet
CrossRef
-
D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, 2006.
MathSciNet
-
M. E. Taylor, Partial differential equations. I. Basic theory, Springer, New York, 2011.
MathSciNet
CrossRef
-
A. W. van der Vaart, Asymptotic statistics, Cambridge University Press, Cambridge, 1998.
MathSciNet
CrossRef
-
N. Yang, N. Chen and X. Wan, A new delta expansion for multivariate diffusions via the Itô-Taylor expansion, J. Econometrics, 209 (2019), 256–288.
MathSciNet
CrossRef
Glasnik Matematicki Home Page