Glasnik Matematicki, Vol. 59, No. 1 (2024), 193-212. \( \)
MARKOV SET-VALUED FUNCTIONS ON COMPACT METRIC SPACES
Iztok Banič, Matevž Črepnjak and Teja Kac
(1) Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia, (2) Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia, (3) Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
e-mail:iztok.banic@um.si
(1) Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia, (2) Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
e-mail:matevz.crepnjak@um.si
Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
e-mail:teja.kac1@um.si
Abstract.
We generalize the notion of Markov functions on closed intervals \([a,b]\) to Markov set-valued functions on compact metric spaces. We also introduce when two such Markov set-valued functions follow the same pattern and show that if the Markov set-valued functions \(F:X\multimap X\) and \(G:Y\multimap Y\) follow the same pattern, then the inverse limits \(\lim_{{\multimap}}(X,F)\) and \(\lim_{\multimap}(Y,G)\) are homeomorphic.
2020 Mathematics Subject Classification. 54F17, 54C60, 54E45
Key words and phrases. Markov set-valued function, inverse limit, upper semicontinuos function, compact metric space
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.09
References:
-
E. Akin, General topology of dynamical systems, Volume 1, American Mathematical Society, Providence, 1993.
MathSciNet
CrossRef
-
L. Alvin and J. Kelly, Markov set-valued functions and their inverse limits, Topology Appl. 241 (2018), 102–114.
MathSciNet
CrossRef
-
I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc. 39 (2016), 839–848.
MathSciNet
CrossRef
-
K. Brucks and H. Bruin, Topics from one-dimensional dynamics, Cambridge University Press, Cambridge, 2004.
MathSciNet
CrossRef
-
I. Banič and M. Črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math. 44 (2018), 695–707.
MathSciNet
CrossRef
-
M. Črepnjak and T. Kac, Inverse limits with Markov-type functions, Bull. Malays. Math. Sci. Soc. 45 (2022), 2161–2164.
MathSciNet
CrossRef
-
M. Črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III 51(71) (2016), 491–501.
MathSciNet
CrossRef
-
S. Holte, Inverse limits of Markov interval maps, Topology Appl. 123 (2002), 421–427.
MathSciNet
CrossRef
-
H. Imamura, Markov-like set-valued functions on intervals and their inverse limits, Glas. Mat. Ser. III 53(73) (2018), 385–401.
MathSciNet
CrossRef
-
H. Imamura, Markov-like set-valued functions on finite graphs and their inverse limits, Topology Appl. 264 (2019), 175–186.
MathSciNet
CrossRef
-
W. T. Ingram, Introduction to inverse limits with set-valued functions, Springer, New York, 2012.
MathSciNet
CrossRef
-
J. A. Kennedy and V. Nall, Dynamical properties of shift maps on Inverse limits with a set valued map, Ergodic Theory Dynam. Systems 38 (2018), 1499–1524.
MathSciNet
CrossRef
-
D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.
MathSciNet
CrossRef
-
A. Loranty and R. J. Pawlak, On the transitivity of multifunctions and density of orbits in generalized topological spaces, Acta Math. Hungar. 135 (2012), 56–66.
MathSciNet
CrossRef
-
J. Li, K. Yan and X. Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst. 35 (2015), 1059–1073.
MathSciNet
CrossRef
-
G. Liao, L. Wang and Y. Zhang, Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Ser. A 49 (2006), 1–8.
MathSciNet
CrossRef
-
S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
MathSciNet
-
R. Metzger, C. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 1965–1975.
MathSciNet
CrossRef
Glasnik Matematicki Home Page