Glasnik Matematicki, Vol. 59, No. 1 (2024), 171-191. \( \)
ON THE VALIDITY OF THE CAUCHY–SCHWARZ INEQUALITY FOR THE BRACKET MAP
Ivana Slamić
Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail:islamic@math.uniri.hr
Abstract.
Due to its properties, the bracket map associated with a dual integrable unitary representation of a locally compact group can be viewed as a certain operator-valued inner product; however, in the non-commutative setting, the Cauchy–Schwarz property for bracket is no longer present in its full strength. In this paper, we show that fulfillment of the property, even in weaker forms, has strong consequences on the underlying group \(G\) and the corresponding von Neumann algebra \(\mbox{VN}(G)\). In particular, we show that for unimodular group \(G\), positive elements of the \(L^1\) space over \(\mbox{VN}(G)\) which are affiliated with the commutant of \(\mbox{VN}(G)\) are precisely those for which the weaker variant of the inequality is fulfilled, and that the validity of the Cauchy–Schwarz property for the appropriate set of elements indicates the existence of a closed abelian subgroup or abelian von Neumann subalgebra of \(\mbox{VN}(G)\).
2020 Mathematics Subject Classification. 43A65, 43A15
Key words and phrases. Dual integrable representation, bracket map, Cauchy–Schwarz inequality
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.08
References:
-
D. Barbieri, E. Hernández and A. Mayeli, Bracket map for Heisenberg group and the characterization of cyclic subspaces, Appl. Comput. Harmon. Anal. 37 (2014), 218–234.
MathSciNet
CrossRef
-
D. Barbieri, E. Hernández and J. Parcet, Riesz and frame systems generated by unitary actions of discrete groups, Appl. Comput. Harmon. Anal. 39 (2015), 369–399.
MathSciNet
CrossRef
-
D. Barbieri, E. Hernández and V. Paternostro, The Zak transform and the structure of spaces invariant by the action of an LCA group, J. Funct. Anal. 269 (2015), 1327–1358.
MathSciNet
CrossRef
-
D. Barbieri, E. Hernández and V. Paternostro, Spaces invariant under unitary representations of discrete groups, J. Math. Anal. Appl. 492 (2020), 124357, 32 pp.
MathSciNet
CrossRef
-
B. Bekka and P. Harpe, Unitary representations of groups, duals, and characters, American Mathematical Society, Providence, RI, 2020.
MathSciNet
-
S. J. Bernau, The square root of a positive self-adjoint operator, J. Austral. Math. Soc. 8 (1968), 17–36.
MathSciNet
CrossRef
-
A. Connes, On the spatial theory of von Neumann algebras, J. Functional Analysis 35 (1980), 153–164.
MathSciNet
CrossRef
-
T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. 46 (1983), 261–268.
MathSciNet
-
M. Hilsum, Les espaces \(L^p\) d'une algèbre de von Neumann définies par la derivée spatiale, J. Functional Analysis 40 (1981), 151–169.
MathSciNet
CrossRef
-
E. Hernández, P. M. Luthy, H. Šikić, F. Soria and E. N. Wilson, Spaces generated by orbits of unitary representations: a tribute to Guido Weiss, J. Geom. Anal. 31 (2021), 8735–8761.
MathSciNet
CrossRef
-
E. Hernández, H. Šikić, G. L. Weiss and E. N. Wilson, Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform, Colloq. Math. 118 (2010), 313–332.
MathSciNet
CrossRef
-
J. W. Iverson, Subspaces of \(L^2\) invariant under translation by an abelian subgroup, J. Funct. Anal., 269 (2015), 865–913.
MathSciNet
CrossRef
-
J. W. Iverson, Frames generated by compact group actions, Trans. Amer. Math. Soc. 370 (2018), 509–551.
MathSciNet
CrossRef
-
R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Academic Press, New York, 1983.
MathSciNet
-
E. Kaniuth and A. T. -M. Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, American Mathematical Society, Providence, RI, 2018.
MathSciNet
CrossRef
-
R. A. Kunze, \(L^p\) Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc, 89 (1958), 519-540.
MathSciNet
CrossRef
-
P. M. Luthy, H. Šikić, F. Soria, G. L. Weiss and E. N. Wilson, One-dimensional dyadic wavelets, Mem. Amer. Math. Soc. 280 (2022), 1–152.
MathSciNet
CrossRef
-
E. Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103–116.
MathSciNet
CrossRef
-
N. W. Rickert, Convolution of \(L^2\)-functions, Colloq. Math. 19 (1968), 301–303.
MathSciNet
CrossRef
-
I. E. Segal, A noncommutative extension of abstract integration, Ann. Math. 57 (1953), 401–457.
MathSciNet
CrossRef
-
H. Šikić and I. Slamić, Dual integrable representations on locally compact groups, J. Geom. Anal. 34 (2024), paper no. 91, 52 pp.
MathSciNet
CrossRef
-
H. Šikić and I. Slamić, Maximal cyclic subspaces for dual integrable representations, J. Math. Anal. Appl. 511 (2022), 25 pp.
MathSciNet
CrossRef
-
W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15–56.
MathSciNet
CrossRef
-
M. Terp, \(L^p\)-Fourier transformation on non-unimodular locally compact groups, Adv. Oper. Theory 2 (2017), 547–583.
MathSciNet
CrossRef
-
M. Terp, \(L^p\)-spaces associated with von Neumann algebras, Math. Institute, Copenhagen Univ., 1981.
-
M. Takesaki, Theory of operator algebras II, Springer-Verlag, Berlin, 2003.
MathSciNet
CrossRef
Glasnik Matematicki Home Page