Glasnik Matematicki, Vol. 59, No. 1 (2024), 147-169. \( \)

CONCEPTIONS ON TOPOLOGICAL TRANSITIVITY IN PRODUCTS AND SYMMETRIC PRODUCTS II

Anahí Rojas, Aura L. Kantún, José N. Méndez and Víctor M. Méndez

Instituto de Agroingeniería, Universidad del Papaloapan, Av. Ferrocarril s/n, San Antonio, Loma Bonita, Oaxaca, C.P. 68400, México
e-mail:arojas@unpa.edu.mx

Instituto de Agroingeniería, Universidad del Papaloapan, Av. Ferrocarril s/n, San Antonio, Loma Bonita, Oaxaca, C.P. 68400, México
e-mail:alkantun@unpa.edu.mx

Instituto de Agroingeniería, Universidad del Papaloapan, Av. Ferrocarril s/n, San Antonio, Loma Bonita, Oaxaca, C.P. 68400, México
e-mail:jmendez@unpa.edu.mx

Instituto de Agroingeniería, Universidad del Papaloapan, Av. Ferrocarril s/n, San Antonio, Loma Bonita, Oaxaca, C.P. 68400, México
e-mail:vmendez@unpa.edu.mx


Abstract.   We continue the work initiated by A. Rojas, F. Barragán and S. Macías in Conceptions on topological transitivity in products and symmetric products. Thurk. J. Math. 44 (2020), 491–523. We consider classes of functions not included in the mentioned paper, namely: exact in the sense of Akin-Auslander-Nagar, fully exact, strongly transitive in the sense of Akin-Auslander-Nagar, very strongly transitive, exact transitive, strongly exact transitive and strongly product transitive.

2020 Mathematics Subject Classification.   37B02, 54B20, 54B10, 54F15, 54A99

Key words and phrases.   Topological transitivity, symmetric products, dynamical systems.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.07


References:

  1. E. Akin, J. Auslander and A. Nagar, Variations on the concept of topological transitivity, Studia Math. 235 (2016), 225–249.
    MathSciNet    CrossRef

  2. E. Akin, J. Auslander and A. Nagar, Dynamics of induced systems, Ergodic Theory Dynam. Systems 37 (2017), 2034–2059.
    MathSciNet    CrossRef

  3. E. Akin and J. D. Carlson, Conceptions of topological transitivity, Topology Appl. 159 (2012), 2815–2830.
    MathSciNet    CrossRef

  4. F. Barragán, S. Macías and A. Rojas, Conceptions of topological transitivity on symmetric products, Math. Pannon. New Series 27 (2021), 61–80.
    MathSciNet    CrossRef

  5. F. Barragán, A. Santiago-Santos and J. F. Tenorio, Dynamic properties for the induced maps on \(n\)-fold symmetric product suspensions II, Topology Appl. 288 (2021), 107484.
    MathSciNet    CrossRef

  6. E. Bilokopytov and S. F. Kolyada, Transitive maps on topological spaces, Ukrainian Math. J. 65 (2014), 1293–1318.
    MathSciNet    CrossRef

  7. C. R. Borges, Elementary topology and applications, World Scientific, Singapore, 2000.
    MathSciNet    CrossRef

  8. K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875–882.
    MathSciNet    CrossRef

  9. N. Değirmenci and Ş. Koçak, Chaos in product maps, Turkish J. Math. 34 (2010), 593–600.
    MathSciNet    CrossRef

  10. R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
    MathSciNet

  11. F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.

  12. G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367–401.
    MathSciNet

  13. A. Illanes and S. B. Nadler Jr., Hyperspaces: fundamentals and recent advances, Monogr. Textbooks Pure Appl. Math., 216, Marcel Dekker, Inc., New York, 1999.
    MathSciNet

  14. S. Macías, Topics on continua, 2nd Ed. Springer, Cham, Switzerland, 2018.
    MathSciNet    CrossRef

  15. J. H. Mai and W. H. Sun, Transitivities of maps of general topological spaces, Topology Appl. 157 (2010), 946–953.
    MathSciNet    CrossRef

  16. J. R. Munkres, Topology, 2nd Ed., Prentice Hall, USA, 2000.
    MathSciNet

  17. S. B. Nadler Jr., Hyperspaces of sets, Monogr. Textbooks Pure Appl. Math., Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978.
    MathSciNet

  18. A. Rojas, F. Barragán and S. Macías, Conceptions on topological transitivity in products and symmetric products, Turkish J. Math. 44 (2020), 491–523.
    MathSciNet    CrossRef

  19. P. Touhey, Yet another definition of chaos, Amer. Math. Monthly 104 (1997), 411–414.
    MathSciNet    CrossRef

  20. L. Vietoris, Bereiche zweiter Ordnung, Monatsh. Math. Phys. 32 (1922), 258–280.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page