Glasnik Matematicki, Vol. 59, No. 1 (2024), 125-145. \( \)
SOME RESULTS IN ASYMPTOTIC ANALYSIS OF FINITE-ENERGY SEQUENCES OF
ONE-DIMENSIONAL CAHN–HILLIARD FUNCTIONAL WITH NON-STANDARD TWO-WELL POTENTIAL
Andrija Raguž
Department of Economics and Mathematics, Zagreb School of Economics and Management, Filipa Vukasovića 1, 10 000 Zagreb, Croatia
e-mail:araguz@zsem.hr
Abstract.
In this paper we extend the consideration of G. Leoni
pertaining to the finite-energy sequences of the one-dimensional
Cahn-Hilliard functional
\[
I^{\varepsilon}_0(u)=\int_{0}^{1}\Big({\varepsilon}^2
u'^2(s)+W(u(s))\Big)ds,
\]
where \(u\in {\rm H}^{1}(0,1)\) and where \(W\) is a two-well
potential with symmetrically placed wells endowed with a
non-standard integrability condition. We introduce several new
classes of finite-energy sequences, we recover their underlying geometric properties as
\(\varepsilon\longrightarrow 0\), and we prove the related compactness result.
2020 Mathematics Subject Classification. 34E15, 49J45
Key words and phrases. Asymptotic analysis, singular perturbation, Young
measures, Cahn-Hilliard functional, compactness
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.06
References:
-
N. Ansini, A. Braides and V. Chiadò Piat, Gradient theory of phase transitions in composite media, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 265–296.
CrossRef
MathSciNet
-
G. Alberti, Variational models for phase transitions, an approach via \(\Gamma\)-convergence, in: Calculus of variations and partial differential equations, Springer-Verlag, Berlin, 2000, 95–114.
CrossRef
MathSciNet
-
G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), 761–825.
CrossRef
MathSciNet
-
S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Non Linéare 7 (1990), 67–90.
CrossRef
MathSciNet
-
J. M. Ball, A version of the fundamental theorem for Young measures, in: PDEs and continuum models of phase transitions, Springer, Berlin 1989, 207–215.
CrossRef
MathSciNet
-
B. Benešová and M. Kružík, Weak lower semicontinuity of integral functionals and application, SIAM Rev. 59 (2017), 703–766.
CrossRef
MathSciNet
-
A. Braides, \(\Gamma\)-convergence for beginners, Oxford University Press, Oxford, 2002.
CrossRef
MathSciNet
-
A. Bradies, Chapter 2 A handbook of \(\Gamma\)-convergence, in: Handbook of Differential Equations: Stationary Partial Differential Equations, Elsevier, Amsterdam, 2006, 101–213.
CrossRef
-
H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
MathSciNet
-
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267.
CrossRef
-
S. Conti, I. Fonseca and G. Leoni, A \(\Gamma\)-convergence result for the two-gradient theory of phase transitions, Comm. Pure Appl. Math. 55 (2002), 857–936.
CrossRef
MathSciNet
-
L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
CrossRef
MathSciNet
-
G. B. Folland, Real analysis, John Wiley and Sons, Inc., New York, 1984.
MathSciNet
-
I. Fonseca and G. Leoni, Modern methods in the calculus of variations: \({\rm L}^p\)-spaces, Springer, New York, 2007.
CrossRef
MathSciNet
-
I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89–102.
CrossRef
MathSciNet
-
D. J. H. Garling, A course in mathematical analysis, Vol. I. Foundations and elementary real analysis, Cambridge University Press, Cambridge, 2013.
CrossRef
MathSciNet
-
M. Giaquinta and G. Modica, Mathematical analysis. Foundations and advanced techniques for functions of several variables, Birkhauser, Boston, 2012.
CrossRef
-
M. E. Gurtin, Some results and conjectures in the gradient theory of phase transitions, in: Metastability and incompletely posed problems, Proc. Workshop, Springer, New York, 1987, 135–146.
CrossRef
MathSciNet
-
R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69–84.
CrossRef
MathSciNet
-
G. Leoni, A remark on compactness for the Cahn-Hilliard functional, ESAIM COCV 20(2) (2014), 517–523.
-
G. Leoni, Gamma convergence and applications to phase transitions, CNA Lecture Notes, CMU, in preparation.
-
G. Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, 2009.
CrossRef
MathSciNet
-
L. Modica and S. Mortola, Un esempio di \(\Gamma\)-convergenca, Bull. Un. Mat. Ital. (5) 14 (1977), 285–299.
MathSciNet
-
S. Müller, Singular perturbations as a selection criterion for minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), 169–204.
CrossRef
MathSciNet
-
S. Müller, Variational models for microstructure and phase transitions, Lecture notes, Max Planck Institut für Mathematik in den Naturwissenschaften, 1998.
-
S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc. 351 (1999), 4585–4597.
CrossRef
MathSciNet
-
N. Hugenbühler, A refinement of Ball's theorem on Young measures, New York J. Math. 3 (1997), 48–53.
MathSciNet
Link
-
N. C. Owen, Nonconvex variational problems with general singular perturbations, Tran. Amer. Math. Soc. 310 (1988), 393–404.
CrossRef
MathSciNet
-
A. Raguž, Relaxation of Ginzburg-Landau functional with \(1\)-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptot. Anal. 41 (2005), 331–361.
MathSciNet
-
A. Raguž, A note on calculation of asymptotic energy for Ginzburg-Landau functional with externally imposed lower-order oscillatory term in one dimension, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10, bis (2007), 1125–1142.
MathSciNet
-
A. Raguž, A result in asymptotic analysis for the functional of Ginzburg-Landau type with externally imposed multiple small scales in one dimension, Glas. Mat. Ser. III 44(64) (2009), 401–421.
CrossRef
MathSciNet
-
A. Raguž, Relaxation of Ginzburg-Landau functional perturbed by continuous nonlinear lower-order term in one dimension, Anal. Appl. (Singap.) 13 (2015), 101–123.
CrossRef
MathSciNet
-
A. Raguž, On approximation of finite-energy sequences of Müller's functional with non-standard 2-well potential, Proc. Appl. Math. Mech. 17 (2017), 713–714.
-
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101 (1988), 209–260.
CrossRef
MathSciNet
-
W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.
CrossRef
MathSciNet
Glasnik Matematicki Home Page