Glasnik Matematicki, Vol. 59, No. 1 (2024), 107-123. \( \)

ON UNIFORM INSTABILITY IN MEAN OF STOCHASTIC SKEW-EVOLUTION SEMIFLOWS

Tian Yue

School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, 442002 Shiyan, China
e-mail:yuet@huat.edu.cn


Abstract.   In this paper we study three concepts of uniform instability in mean for stochastic skew-evolution semiflows: uniform exponential instability in mean, uniform polynomial instability in mean and uniform \(h\)-instability in mean. These concepts are natural generalizations from the deterministic case. Connections between these concepts are presented. Additionally, some expansion properties, logarithmic criteria and majorization criteria of these concepts are given, respectively.

2020 Mathematics Subject Classification.   34D05, 37L55

Key words and phrases.   Stochastic skew-evolution semiflows, uniform exponential instability in mean, uniform polynomial instability in mean, uniform \(h\)-instability in mean


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.05


References:

  1. L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998.
    MathSciNet    CrossRef

  2. L. Barreira, D. Dragičević and C. Valls, Admissibility for exponential dichotomies in average, Stoch. Dyn. 15 (2015), 1550014, 16pp.
    MathSciNet    CrossRef

  3. L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies in average for flows and admissibility, Publ. Math. Debrecen 89 (2016), 415–439.
    MathSciNet    CrossRef

  4. L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.
    MathSciNet    CrossRef

  5. A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.
    MathSciNet    CrossRef

  6. R. Boruga, Polynomial stability in average for cocycles of linear operators, Theory Appl. Math. Comput. Sci. 9 (2019), 8–13.

  7. R. Boruga, Majorization criteria for polynomial stability and instability of evolution operators, Sci. Bull. Politeh. Univ. Timiş. 64 (2019), 55–62.

  8. H. Damak, On uniform \(h\)-stability of non-autonomous evolution equations in Banach spaces, Bull. Malays. Math. Sci. Soc. 44 (2021), 4367–4381.
    MathSciNet    CrossRef

  9. R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
    MathSciNet    CrossRef

  10. D. Dragičević, A version of a theorem of R.Datko for stability in average, Systems Control Lett. 96 (2016), 1–6.
    MathSciNet    CrossRef

  11. D. Dragičević, Admissibility and polynomial dichotomies for evolution families, Commun. Pure Appl. Anal. 19 (2020), 1321–1336.
    MathSciNet    CrossRef

  12. D. Dragičević and C. Preda, Lyapunov type theorems for exponential stability of linear skew-product three-parameter semiflows with discrete time, Axioms 9 (2020), 47, 12pp.

  13. T. M. S. Fülöp, M. Megan and D. I. Borlea, On uniform stability with growth rates of stochastic skew-evolution semiflows in Banach spaces, Axioms 10 (2021), 182, 11pp.

  14. P. V. Hai, Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows, Nonlinear. Anal. 72 (2010), 4390–4396.
    MathSciNet    CrossRef

  15. P. V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897–1907.
    MathSciNet    CrossRef

  16. P. V. Hai, On two theorems regarding exponential stability, Appl. Anal. Discrete Math. 5 (2011), 240–258.
    MathSciNet    CrossRef

  17. P. V. Hai, On the polynomial stability of evolution families, Appl. Anal. 95 (2016), 1239–1255.
    MathSciNet    CrossRef

  18. P. V. Hai, Polynomial stability of evolution cocycles and Banach function spaces, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), 299–314.
    MathSciNet    CrossRef

  19. P. V. Hai, Polynomial stability and polynomial instability for skew-evolution semiflows, Results Math. 74 (2019), 175, 19pp.
    MathSciNet    CrossRef

  20. P. V. Hai, Polynomial behavior in mean of stochastic skew-evolution semiflows, arXiv:1902.04214, 2019.

  21. M. Megan and C. Stoica, Discrete asymptotic behaviors for skew-evolution semiflows on Banach spaces, Carpathian J. Math. 24 (2008), 348–355.

  22. M. Megan, C. Stoica and L. Buliga, On asymptotic behaviors for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math. 23 (2007), 117–125.
    MathSciNet

  23. M. Pinto, Perturbation of asymptotically stable differential systems, Analysis 4 (1984), 161–175.
    MathSciNet    CrossRef

  24. C. Preda and A.-P. Popiţiu, A discrete-time approach in the qualitative theory of skew-product three-parameter semiflows, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 367–379.
    MathSciNet    CrossRef

  25. C. Preda and P. Preda, Some results on the qualitative theory of semiflows, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 173–186.
    MathSciNet    Link

  26. C. Preda, P. Preda and A.-P. Petre, On the uniform exponential stability of linear skew-product three-parameter semiflows, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 54(102) (2011), 269–279.
    MathSciNet

  27. C. Stoica and M. Megan, On uniform exponential stability for skew-evolution semiflows on Banach spaces, Nonlinear Anal. 72 (2010), 1305–1313.
    MathSciNet    CrossRef

  28. D. Stoica, Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl. 120 (2010), 1920–1928.
    MathSciNet    CrossRef

  29. D. Stoica and M. Megan, On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces, Czechoslovak Math. J. 62(137) (2012), 879–887.
    MathSciNet    CrossRef

  30. T. Yue, Some Datko and Barbashin type characterizations for the uniform \(h\)-instability of evolution families, Glas. Mat. Ser. III 57(77) (2022), 265–280.
    MathSciNet    CrossRef

  31. T. Yue, Barbashin type characterizations for the uniform polynomial stability and instability of evolution families, Georgian Math. J. 29 (2022), 953–966.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page