Glasnik Matematicki, Vol. 59, No. 1 (2024), 77-105. \( \)
PARABOLIC INDUCTION FROM TWO SEGMENTS, LINKED UNDER CONTRAGREDIENT, WITH A ONE HALF CUSPIDAL REDUCIBILITY, A SPECIAL CASE
Igor Ciganović
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:igor.ciganovic@math.hr
Abstract.
In this paper, we determine the composition series of the induced representation
\(\delta([\nu^{-a}\rho,\nu^c\rho])\times \delta([\nu^\frac{1}{2}\rho,\nu^b\rho])\rtimes \sigma\) where
\(a, b, c \in \mathbb{Z}+\frac{1}{2}\) such that \(\frac{1}{2}\leq a < b < c\),
\(\rho\) is an irreducible cuspidal unitary representation of a general linear group
and \(\sigma\) is an irreducible cuspidal representation of a classical group such that
\(\nu^\frac{1}{2}\rho\rtimes \sigma\) reduces.
2020 Mathematics Subject Classification. 22D30, 22E50, 22D12, 11F85
Key words and phrases. Classical group, composition series, induced representations, \(p\)-adic field, Jacquet module
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.04
References:
-
I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441–472.
Link
MathSciNet
-
B. Bošnjak, Representations induced from cuspidal and ladder representations of classical \(p\)-adic groups, Proc. Amer. Math. Soc. 149 (2021), 5081–5091.
CrossRef
MathSciNet
-
I. Ciganović, Composition series of a class of induced representations, a case of one half cuspidal reducibility, Pacific J. Math. 296 (2018), 21–30.
CrossRef
MathSciNet
-
I. Ciganović, Composition series of a class of induced representations built on discrete series, Manuscripta Math. 170 (2023), 1–18.
CrossRef
MathSciNet
-
M. Hanzer, G. Muić, On an algebraic approach to the Zelevinsky classification for classical \(p\)-adic groups, J. Algebra 320 (2008), 3206–3231.
CrossRef
MathSciNet
-
C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213–1262.
Link
MathSciNet
-
Y. Kim, B. Liu, and I. Matić, Degenerate principal series for classical and odd GSpin groups in the general case, Represent. Theory 24 (2020), 403–434.
CrossRef
MathSciNet
-
I. Matić, On discrete series subrepresentations of the generalized principal series, Glas. Mat. Ser.III 51(71) (2016), 125–152.
CrossRef
MathSciNet
-
I. Matić Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Math. 33 (2021), 193–212.
CrossRef
MathSciNet
-
I. Matić, M. Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), 437–476.
CrossRef
MathSciNet
-
C. Mœglin, Sur la classification des séries discrètes des groupes classiques \(p\)-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. 4 (2002), 143–200.
CrossRef
MathSciNet
-
C. Mœglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondence de Howe sur un corps \(p\)-adique, Springer-Verlag, Berlin, 1987.
CrossRef
MathSciNet
-
C. Mœglin, M. Tadić, Construction of discrete series for classical \(p\)-adic groups, J. Amer. Math. Soc. 15 (2002), 715–786.
CrossRef
MathSciNet
-
G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157–202.
CrossRef
MathSciNet
-
G. Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), 616–647.
CrossRef
MathSciNet
-
M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
CrossRef
MathSciNet
-
M. Tadić, On regular square integrable representations of \(p\)-adic groups, Amer. J. Math. 120 (1998), 159–210.
CrossRef
MathSciNet
Link
-
M. Tadić, Structure arising from induction and Jacquet modules of representations of classical \(p\)-adic groups, J. Algebra 177 (1995), 1–33.
CrossRef
MathSciNet
-
M. Tadić, A family of square integrable representations of classical \(p\)-adic groups in the case of general half-integral reducibilities, Glas. Mat. Ser. III 37(57) (2002), 21–57.
MathSciNet
-
M. Tadić, On tempered and square integrable representations of classical \(p\)-adic groups, Sci. China Math., 56 (2013), 2273–2313.
CrossRef
MathSciNet
-
M. Tadić, Unitarizability in corank three for classical \(p\)-adic groups, Mem. Amer. Math. Soc. 286 (2023), no. 1421, pp. vii+120.
CrossRef
MathSciNet
-
A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups. II. On irreducible representations of \(GL(n)\), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165–210.
CrossRef
MathSciNet
Glasnik Matematicki Home Page