Glasnik Matematicki, Vol. 59, No. 1 (2024), 77-105. \( \)

PARABOLIC INDUCTION FROM TWO SEGMENTS, LINKED UNDER CONTRAGREDIENT, WITH A ONE HALF CUSPIDAL REDUCIBILITY, A SPECIAL CASE

Igor Ciganović

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:igor.ciganovic@math.hr


Abstract.   In this paper, we determine the composition series of the induced representation \(\delta([\nu^{-a}\rho,\nu^c\rho])\times \delta([\nu^\frac{1}{2}\rho,\nu^b\rho])\rtimes \sigma\) where \(a, b, c \in \mathbb{Z}+\frac{1}{2}\) such that \(\frac{1}{2}\leq a < b < c\), \(\rho\) is an irreducible cuspidal unitary representation of a general linear group and \(\sigma\) is an irreducible cuspidal representation of a classical group such that \(\nu^\frac{1}{2}\rho\rtimes \sigma\) reduces.

2020 Mathematics Subject Classification.   22D30, 22E50, 22D12, 11F85

Key words and phrases.   Classical group, composition series, induced representations, \(p\)-adic field, Jacquet module


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.04


References:

  1. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441–472.
    Link    MathSciNet

  2. B. Bošnjak, Representations induced from cuspidal and ladder representations of classical \(p\)-adic groups, Proc. Amer. Math. Soc. 149 (2021), 5081–5091.
    CrossRef    MathSciNet

  3. I. Ciganović, Composition series of a class of induced representations, a case of one half cuspidal reducibility, Pacific J. Math. 296 (2018), 21–30.
    CrossRef    MathSciNet

  4. I. Ciganović, Composition series of a class of induced representations built on discrete series, Manuscripta Math. 170 (2023), 1–18.
    CrossRef    MathSciNet

  5. M. Hanzer, G. Muić, On an algebraic approach to the Zelevinsky classification for classical \(p\)-adic groups, J. Algebra 320 (2008), 3206–3231.
    CrossRef    MathSciNet

  6. C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213–1262.
    Link    MathSciNet

  7. Y. Kim, B. Liu, and I. Matić, Degenerate principal series for classical and odd GSpin groups in the general case, Represent. Theory 24 (2020), 403–434.
    CrossRef    MathSciNet

  8. I. Matić, On discrete series subrepresentations of the generalized principal series, Glas. Mat. Ser.III 51(71) (2016), 125–152.
    CrossRef    MathSciNet

  9. I. Matić Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Math. 33 (2021), 193–212.
    CrossRef    MathSciNet

  10. I. Matić, M. Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), 437–476.
    CrossRef    MathSciNet

  11. C. Mœglin, Sur la classification des séries discrètes des groupes classiques \(p\)-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. 4 (2002), 143–200.
    CrossRef    MathSciNet

  12. C.  Mœglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondence de Howe sur un corps \(p\)-adique, Springer-Verlag, Berlin, 1987.
    CrossRef    MathSciNet

  13. C. Mœglin, M. Tadić, Construction of discrete series for classical \(p\)-adic groups, J. Amer. Math. Soc. 15 (2002), 715–786.
    CrossRef    MathSciNet

  14. G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157–202.
    CrossRef    MathSciNet

  15. G. Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), 616–647.
    CrossRef    MathSciNet

  16. M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
    CrossRef    MathSciNet

  17. M. Tadić, On regular square integrable representations of \(p\)-adic groups, Amer. J. Math. 120 (1998), 159–210.
    CrossRef    MathSciNet    Link

  18. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical \(p\)-adic groups, J. Algebra 177 (1995), 1–33.
    CrossRef    MathSciNet

  19. M. Tadić, A family of square integrable representations of classical \(p\)-adic groups in the case of general half-integral reducibilities, Glas. Mat. Ser. III 37(57) (2002), 21–57.
    MathSciNet

  20. M. Tadić, On tempered and square integrable representations of classical \(p\)-adic groups, Sci. China Math., 56 (2013), 2273–2313.
    CrossRef    MathSciNet

  21. M. Tadić, Unitarizability in corank three for classical \(p\)-adic groups, Mem. Amer. Math. Soc. 286 (2023), no. 1421, pp. vii+120.
    CrossRef    MathSciNet

  22. A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups. II. On irreducible representations of \(GL(n)\), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165–210.
    CrossRef    MathSciNet

Glasnik Matematicki Home Page