Glasnik Matematicki, Vol. 59, No. 1 (2024), 33-49. \( \)
ON THE BOUNDEDNESS OF EULER-STIELTJES CONSTANTS FOR THE RANKIN-SELBERG \(L-\)FUNCTION
Medina Zubača
Department of Mathematical and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:medina.zubaca@pmf.unsa.ba
Abstract.
Let \(E\) be a Galois extension of \(\mathbb{Q}\) of finite degree and let \(\pi \) and \(\pi'\) be two irreducible automorphic unitary cuspidal representations of \(GL_m(\mathbb{A}_E)\) and \(GL_{m'}(\mathbb{A}_E)\), respectively. Let \(\Lambda(s,\pi\times\widetilde{\pi}')\) be a Rankin-Selberg \(L-\)function attached to the product \(\pi\times\widetilde{\pi}'\), where \(\widetilde{\pi}'\) denotes the contragredient representation of \(\pi'\), and let its finite part (excluding Archimedean factors) be \(L(s,\pi\times\widetilde{\pi}')\).
The Euler-Stieltjes constants of the Rankin-Selberg \(L-\)function are the coefficients in the Laurent (Taylor) series expansion around \(s=1+it_0\) of the function \(L(s, \pi \times \widetilde{\pi}')\). In this paper, we derive an upper bound for these constants.
2020 Mathematics Subject Classification. 11M26, 11S40
Key words and phrases. Euler-Stieltjes constants, Rankin-Selberg \(L-\)function
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.1.02
References:
-
J. A. Adell, Asymptotic estimates for Stieltjes constants: a probabilistic approach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 954–963.
MathSciNet
CrossRef
-
M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first kind, Acta Arith. 131 (2008), 125–143.
MathSciNet
CrossRef
-
B. C. Berndt, On the Hurwitz zeta-function, Rocky Mountain J. Math. 2 (1972), 151–157.
MathSciNet
CrossRef
-
E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.
MathSciNet
CrossRef
-
W. E. Briggs, Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955/56), 117–121.
MathSciNet
-
W. E. Briggs and S. Chowla, The power series coefficients of \(\zeta(s)\), Amer. Math. Monthly 62 (1955), 323–325.
MathSciNet
CrossRef
-
T. Chatterjee and S. Garg, On \(q\)-analogue of Euler-Stieltjes constants, Proc. Amer. Math. Soc. 151 (2023), 2011–2022.
MathSciNet
CrossRef
-
M. W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), 603–612.
MathSciNet
CrossRef
-
M. W. Coffey, The Stieltjes constants, their relation to the \(\eta_j\) coefficients, and representation of the Hurwitz zeta function, Analysis (Munich) 30 (2010), 383–409.
MathSciNet
CrossRef
-
M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. 44 (2014), 443–477.
MathSciNet
CrossRef
-
J. W. Cogdell, \(L\)-functions and converse theorems for \({\rm GL}_n\), in: Automorphic forms and applications, Amer. Math. Soc., Providence, RI, 2007, 97–177.
MathSciNet
CrossRef
Link
-
L. Euler, De progressionibus harmonicis observationes, Comment. acad sci. Petrop. 7 (1740), 150–161. (Opera Omnia, Series 1, Vol. 14, 87–100.)
MathSciNet
-
T. Gillespie and G. Ji, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011), 35–46.
MathSciNet
CrossRef
-
Y. Hashimoto, The Euler-Selberg constants for non-uniform lattices of rank one symmetric spaces, Kyushu J. Math. 57 (2003), 347–370.
MathSciNet
CrossRef
-
Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 493–516.
MathSciNet
-
C. Hermite and T. J. Stieltjes, Correspondance d'Hermite et de Stieltjes, edited by B. Baillaud and H. Bourget, Gauthier-Villars, Paris, (1905).
MathSciNet
CrossRef
-
S. Inoue, S. Saad Eddin and A. I. Suriajaya, Stieltjes constants of \(L\)-functions in the extended Selberg class, Ramanujan J. 55 (2021), 609–621.
MathSciNet
CrossRef
-
H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), 499–558.
MathSciNet
CrossRef
-
J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. \(0\leq d\leq 1\), Acta Math. 182 (1999), 207–241.
MathSciNet
CrossRef
-
C. Knessl and M. W. Coffey, An asymptotic form for the Stieltjes constants \(\gamma_{k}(a)\) and for a sum \(S_{\gamma}(n)\) appearing under the Li criterion, Math. Comp. 80 (2011), 2197–2217.
MathSciNet
CrossRef
-
Y. L. Luke, The special functions and their approximations. Academic Press, New York-London, 1969.
MathSciNet
MathSciNet
-
K. Matsumoto, T. Onozuka and I. Wakabayashi, Laurent series expansions of multiple zeta-functions of Euler-Zagier type at integer points, Math. Z. 295 (2020), 623–642.
MathSciNet
CrossRef
-
K. Maślanka, Li's criterion for the Riemann hypothesis—numerical approach, Opuscula Math. 24 (2004), 103–114.
MathSciNet
-
Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, in: Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984), World Sci. Publishing, Singapore, 1985, 279–295.
MathSciNet
-
M. R. Murty, Problems in analytic number theory, Springer-Verlag, New York, 2001.
MathSciNet
CrossRef
-
A. Odžak and L. Smajlović, On Li's coefficients for the Rankin-Selberg \(L\)-functions, Ramanujan J. 21 (2010), 303–334.
MathSciNet
CrossRef
-
A. Odžak and L. Smajlović, Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function and weighted Selberg orthogonality, Glas. Mat. Ser. III 51(71) (2016), 23–44.
MathSciNet
CrossRef
-
A. Odžak and L. Smajlović, On the generalized Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function, Int. J. Number Theory 13 (2017), 1363–1379.
MathSciNet
CrossRef
-
M. Overholt, A course in analytic number theory, American Mathematical Society, Providence, RI, 2014.
MathSciNet
CrossRef
-
M. Prévost and T. Rivoal, New convergent sequences of approximations to Stieltjes' constants, J. Math. Anal. Appl. 524 (2023), Paper No. 127091, 20.
MathSciNet
CrossRef
-
Z. Rudnick and P. Sarnak, Zeros of principal \(L\)-functions and random matrix theory, 1996, 269–322.
MathSciNet
CrossRef
-
S. Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), 1027–1044.
MathSciNet
CrossRef
-
S. Saad Eddin, The signs of the Stieltjes constants associated with the Dedekind zeta function, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), 93–96.
MathSciNet
CrossRef
-
B. Saha, Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points, Selecta Math. (N.S.) 28 (2022), Paper No. 6, 41.
MathSciNet
CrossRef
-
F. Shahidi, On nonvanishing of \(L\)-functions, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 462–464.
MathSciNet
CrossRef
-
F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for \({\rm GL}(n)\), Amer. J. Math. 106 (1984), 67–111.
MathSciNet
CrossRef
-
F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973–1007.
MathSciNet
CrossRef
-
F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups, Ann. of Math. (2) 132 (1990), 273–330.
MathSciNet
CrossRef
-
L. Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), 828–851.
MathSciNet
CrossRef
-
E. C. Titchmarsh, The theory of functions, \(2^{nd}\) ed., Oxford University Press, Oxford, 1958.
MathSciNet
-
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1902.
Glasnik Matematicki Home Page