Glasnik Matematicki, Vol. 59, No. 1 (2024), 33-49. \( \)

ON THE BOUNDEDNESS OF EULER-STIELTJES CONSTANTS FOR THE RANKIN-SELBERG \(L-\)FUNCTION

Medina Zubača

Department of Mathematical and Computer Sciences, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
e-mail:medina.zubaca@pmf.unsa.ba


Abstract.   Let \(E\) be a Galois extension of \(\mathbb{Q}\) of finite degree and let \(\pi \) and \(\pi'\) be two irreducible automorphic unitary cuspidal representations of \(GL_m(\mathbb{A}_E)\) and \(GL_{m'}(\mathbb{A}_E)\), respectively. Let \(\Lambda(s,\pi\times\widetilde{\pi}')\) be a Rankin-Selberg \(L-\)function attached to the product \(\pi\times\widetilde{\pi}'\), where \(\widetilde{\pi}'\) denotes the contragredient representation of \(\pi'\), and let its finite part (excluding Archimedean factors) be \(L(s,\pi\times\widetilde{\pi}')\). The Euler-Stieltjes constants of the Rankin-Selberg \(L-\)function are the coefficients in the Laurent (Taylor) series expansion around \(s=1+it_0\) of the function \(L(s, \pi \times \widetilde{\pi}')\). In this paper, we derive an upper bound for these constants.

2020 Mathematics Subject Classification.   11M26, 11S40

Key words and phrases.   Euler-Stieltjes constants, Rankin-Selberg \(L-\)function


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.02


References:

  1. J. A. Adell, Asymptotic estimates for Stieltjes constants: a probabilistic approach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 954–963.
    MathSciNet    CrossRef

  2. M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first kind, Acta Arith. 131 (2008), 125–143.
    MathSciNet    CrossRef

  3. B. C. Berndt, On the Hurwitz zeta-function, Rocky Mountain J. Math. 2 (1972), 151–157.
    MathSciNet    CrossRef

  4. E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.
    MathSciNet    CrossRef

  5. W. E. Briggs, Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955/56), 117–121.
    MathSciNet

  6. W. E. Briggs and S. Chowla, The power series coefficients of \(\zeta(s)\), Amer. Math. Monthly 62 (1955), 323–325.
    MathSciNet    CrossRef

  7. T. Chatterjee and S. Garg, On \(q\)-analogue of Euler-Stieltjes constants, Proc. Amer. Math. Soc. 151 (2023), 2011–2022.
    MathSciNet    CrossRef

  8. M. W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), 603–612.
    MathSciNet    CrossRef

  9. M. W. Coffey, The Stieltjes constants, their relation to the \(\eta_j\) coefficients, and representation of the Hurwitz zeta function, Analysis (Munich) 30 (2010), 383–409.
    MathSciNet    CrossRef

  10. M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. 44 (2014), 443–477.
    MathSciNet    CrossRef

  11. J. W. Cogdell, \(L\)-functions and converse theorems for \({\rm GL}_n\), in: Automorphic forms and applications, Amer. Math. Soc., Providence, RI, 2007, 97–177.
    MathSciNet    CrossRef    Link

  12. L. Euler, De progressionibus harmonicis observationes, Comment. acad sci. Petrop. 7 (1740), 150–161. (Opera Omnia, Series 1, Vol. 14, 87–100.)
    MathSciNet

  13. T. Gillespie and G. Ji, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011), 35–46.
    MathSciNet    CrossRef

  14. Y. Hashimoto, The Euler-Selberg constants for non-uniform lattices of rank one symmetric spaces, Kyushu J. Math. 57 (2003), 347–370.
    MathSciNet    CrossRef

  15. Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 493–516.
    MathSciNet

  16. C. Hermite and T. J. Stieltjes, Correspondance d'Hermite et de Stieltjes, edited by B. Baillaud and H. Bourget, Gauthier-Villars, Paris, (1905).
    MathSciNet    CrossRef

  17. S. Inoue, S. Saad Eddin and A. I. Suriajaya, Stieltjes constants of \(L\)-functions in the extended Selberg class, Ramanujan J. 55 (2021), 609–621.
    MathSciNet    CrossRef

  18. H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), 499–558.
    MathSciNet    CrossRef

  19. J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. \(0\leq d\leq 1\), Acta Math. 182 (1999), 207–241.
    MathSciNet    CrossRef

  20. C. Knessl and M. W. Coffey, An asymptotic form for the Stieltjes constants \(\gamma_{k}(a)\) and for a sum \(S_{\gamma}(n)\) appearing under the Li criterion, Math. Comp. 80 (2011), 2197–2217.
    MathSciNet    CrossRef

  21. Y. L. Luke, The special functions and their approximations. Academic Press, New York-London, 1969.
    MathSciNet    MathSciNet

  22. K. Matsumoto, T. Onozuka and I. Wakabayashi, Laurent series expansions of multiple zeta-functions of Euler-Zagier type at integer points, Math. Z. 295 (2020), 623–642.
    MathSciNet    CrossRef

  23. K. Maślanka, Li's criterion for the Riemann hypothesis—numerical approach, Opuscula Math. 24 (2004), 103–114.
    MathSciNet

  24. Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, in: Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984), World Sci. Publishing, Singapore, 1985, 279–295.
    MathSciNet

  25. M. R. Murty, Problems in analytic number theory, Springer-Verlag, New York, 2001.
    MathSciNet    CrossRef

  26. A. Odžak and L. Smajlović, On Li's coefficients for the Rankin-Selberg \(L\)-functions, Ramanujan J. 21 (2010), 303–334.
    MathSciNet    CrossRef

  27. A. Odžak and L. Smajlović, Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function and weighted Selberg orthogonality, Glas. Mat. Ser. III 51(71) (2016), 23–44.
    MathSciNet    CrossRef

  28. A. Odžak and L. Smajlović, On the generalized Euler-Stieltjes constants for the Rankin-Selberg \(L\)-function, Int. J. Number Theory 13 (2017), 1363–1379.
    MathSciNet    CrossRef

  29. M. Overholt, A course in analytic number theory, American Mathematical Society, Providence, RI, 2014.
    MathSciNet    CrossRef

  30. M. Prévost and T. Rivoal, New convergent sequences of approximations to Stieltjes' constants, J. Math. Anal. Appl. 524 (2023), Paper No. 127091, 20.
    MathSciNet    CrossRef

  31. Z. Rudnick and P. Sarnak, Zeros of principal \(L\)-functions and random matrix theory, 1996, 269–322.
    MathSciNet    CrossRef

  32. S. Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), 1027–1044.
    MathSciNet    CrossRef

  33. S. Saad Eddin, The signs of the Stieltjes constants associated with the Dedekind zeta function, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), 93–96.
    MathSciNet    CrossRef

  34. B. Saha, Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points, Selecta Math. (N.S.) 28 (2022), Paper No. 6, 41.
    MathSciNet    CrossRef

  35. F. Shahidi, On nonvanishing of \(L\)-functions, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 462–464.
    MathSciNet    CrossRef

  36. F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for \({\rm GL}(n)\), Amer. J. Math. 106 (1984), 67–111.
    MathSciNet    CrossRef

  37. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973–1007.
    MathSciNet    CrossRef

  38. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups, Ann. of Math. (2) 132 (1990), 273–330.
    MathSciNet    CrossRef

  39. L. Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), 828–851.
    MathSciNet    CrossRef

  40. E. C. Titchmarsh, The theory of functions, \(2^{nd}\) ed., Oxford University Press, Oxford, 1958.
    MathSciNet

  41. E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1902.

Glasnik Matematicki Home Page