Glasnik Matematicki, Vol. 58, No. 2 (2023), 327-330. \( \)
SPLITNESS OF THE VERONESEAN DUAL HYPEROVALS: A QUICK PROOF
Ulrich Dempwolff
Department of Mathematics, Technical University Kaiserslautern, 67653 Kaiserslautern, Germany
e-mail:dempwolff@mathematik.uni-kl.de
Abstract.
Satoshi Yoshiara shows in [7] that
the Veronesean dual hyperovals over \({\mathbb F}_2\) are of split type.
So far there exists no published proof
that a Veronesean dual hyperoval over any finite field of even characteristic
is of split type.
In this note
we give a quick proof of this fact.
2020 Mathematics Subject Classification. 51A45, 05B25
Key words and phrases. Dimensional dimensional dual hyperoval
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.12
References:
-
U. Dempwolff and Y. Edel, The radical of binary dimensional dual hyperovals, Finite Fields Appl. 91 (2023), paper no. 102257.
MathSciNet
CrossRef
-
U. Dempwolff and Y. Edel, The webpage associated with [1].
Link -
H. Taniguchi, On a family of dual hyperovals over \({\rm GF}(q)\) with \(q\) even, European J. Combin. 26 (2005), 195–199.
MathSciNet
CrossRef
-
H. Taniguchi, Quotients of the deformation of Veronesean dual hyperoval in \({\rm PG}(3d, 2)\), Discrete Math. 312 (2012), 498–508.
MathSciNet
CrossRef
-
S. Yoshiara, Dimensional dual arcs–a survey, in Finite geometries, groups and computation, Walter de Gruyter GmbH & Co. KG, Berlin, 2006, pp. 247–266.
MathSciNet
-
S. Yoshiara, Notes on Taniguchi's dimensional dual hyperovals, European J. Combin. 28 (2007), 674–684.
MathSciNet
CrossRef
-
S. Yoshiara, Splitness of the Veronesean and the Taniguchi dual hyperovals, Discrete Math. 342 (2019), 844–854.
MathSciNet
CrossRef
Glasnik Matematicki Home Page