Glasnik Matematicki, Vol. 58, No. 2 (2023), 327-330. \( \)

SPLITNESS OF THE VERONESEAN DUAL HYPEROVALS: A QUICK PROOF

Ulrich Dempwolff

Department of Mathematics, Technical University Kaiserslautern, 67653 Kaiserslautern, Germany
e-mail:dempwolff@mathematik.uni-kl.de


Abstract.   Satoshi Yoshiara shows in [7] that the Veronesean dual hyperovals over \({\mathbb F}_2\) are of split type. So far there exists no published proof that a Veronesean dual hyperoval over any finite field of even characteristic is of split type. In this note we give a quick proof of this fact.

2020 Mathematics Subject Classification.   51A45, 05B25

Key words and phrases.   Dimensional dimensional dual hyperoval


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.12


References:

  1. U. Dempwolff and Y. Edel, The radical of binary dimensional dual hyperovals, Finite Fields Appl. 91 (2023), paper no. 102257.
    MathSciNet    CrossRef

  2. U. Dempwolff and Y. Edel, The webpage associated with [1].
    Link

  3. H. Taniguchi, On a family of dual hyperovals over \({\rm GF}(q)\) with \(q\) even, European J. Combin. 26 (2005), 195–199.
    MathSciNet    CrossRef

  4. H. Taniguchi, Quotients of the deformation of Veronesean dual hyperoval in \({\rm PG}(3d, 2)\), Discrete Math. 312 (2012), 498–508.
    MathSciNet    CrossRef

  5. S. Yoshiara, Dimensional dual arcs–a survey, in Finite geometries, groups and computation, Walter de Gruyter GmbH & Co. KG, Berlin, 2006, pp. 247–266.
    MathSciNet

  6. S. Yoshiara, Notes on Taniguchi's dimensional dual hyperovals, European J. Combin. 28 (2007), 674–684.
    MathSciNet    CrossRef

  7. S. Yoshiara, Splitness of the Veronesean and the Taniguchi dual hyperovals, Discrete Math. 342 (2019), 844–854.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page