Glasnik Matematicki, Vol. 58, No. 2 (2023), 307-315. \( \)
ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ELEMENT ORDER OF THE ALTERNATING GROUP OF DEGREE \(5\)
Marcel Herzog, Patrizia Longobardi and Mercede Maj
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
e-mail:herzogm@tauex.tau.ac.il
Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
e-mail:plongobardi@unisa.it
Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
e-mail:mmaj@unisa.it
Abstract.
Let \(G\) be a finite group. Denote by \(\psi(G)\) the sum
\(\psi(G)=\sum_{x\in G}|x|,\) where \(|x|\) denotes the order of the element \(x\), and
by \(o(G)\) the average element orders, i.e. the quotient \(o(G)=\frac{\psi(G)}{|G|}.\)
We prove that \(o(G) = o(A_5)\) if and only if \(G \simeq A_5\), where \(A_5\) is the alternating group of degree \(5\).
2020 Mathematics Subject Classification. 20D60, 20F16, 20E34
Key words and phrases. Group element orders, alternating group
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.10
References:
-
H. Amiri and S. M. Jafarian Amiri, Sums of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), 187–190.
MathSciNet
CrossRef
-
H. Amiri and S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm. Algebra 40 (2012), 770–778.
MathSciNet
CrossRef
-
H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978–2980.
MathSciNet
CrossRef
-
A. Bahri, B. Khosravi and Z. Akhlaghi, A result on the sum of element orders of a finite group, Arch. Math. (Basel) 114 (2020), 3–12.
MathSciNet
CrossRef
-
M. Baniasad Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115–124.
MathSciNet
CrossRef
-
M. Baniasad Azad and B. Khosravi, On the sum of element orders of \(PSL(2,p)\) for some \(p\), Ital. J. Pure and Applied Math. 42 (2019), 12–24.
-
M. Baniasad Azad and B. Khosravi, On two conjectures about the sum of element orders, Can. Math. Bull. 65 (2022), 30–38.
MathSciNet
CrossRef
-
R. Brandl and W. Shi, The characterization of \(PSL(2,p)\) by its element orders, J. Algebra 163 (1994), 109–114.
MathSciNet
CrossRef
-
M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra 45 (2017), 677–687.
MathSciNet
CrossRef
-
D. Gorenstein, Finite groups, Chelsea Publishing Co., New York, 1980.
MathSciNet
-
M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure Appl. Algebra, 222 (2018), 1628–1642.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, Properties of finite and periodic groups determined by their elements orders (a survey), in: Group Theory and Computation, Springer, Singapore, 2018, 59–90.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order \(2m\) with \(m\) odd, Comm. Algebra 47 (2019), 2035–2048.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. Algebra 511 (2018), 215–226.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of odd order, Internat. J. Algebra Comput. 31 (2021), 1049–1063.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, The second maximal groups with respect to the sum of element orders, J. Pure Appl. Algebra 225 (2021), 106531, 11.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, Another criterion for solvability of finite groups, J. Algebra 597 (2022), 1–23.
MathSciNet
CrossRef
-
M. Herzog, P. Longobardi and M. Maj, New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups, Int. J. Group Theory 12 (2023), 35–44.
MathSciNet
CrossRef
-
E. I. Khukhro, A. Moretó and M. Zarrin, The average element order and the number of conjugacy classes of finite groups, J. Algebra 569 (2021), 1–11.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri Second maximum sum of element orders of finite nilpotent groups, Comm. Algebra 41 (2013), 2055–2059.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri, Maximum sum of element orders of all proper subgroups of \(PGL(2,q)\), Bull. Iranian Math. Soc. 39 (2013), 501–505.
MathSciNet
-
S. M. Jafarian Amiri, Characterization of \(A_5\) and \(PSL(2,7)\) by sum of element orders, Int. J. Group Theory 2 (2013), 35–39.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 (2014), 531–539.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri and M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Comm. Algebra 42 (2014), 5319–5328.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri and M. Amiri, Characterization of \(p\)-groups by sum of the element orders, Publ. Math. Debrecen 86 (2015), 31–37.
MathSciNet
CrossRef
-
S. M. Jafarian Amiri and M. Amiri, Sum of the Element Orders in Groups with the Square-Free Order, Bull. Malays. Math. Sci. Soc. 40 (2017), 1025–1034.
MathSciNet
CrossRef
-
A. Jaikin-Zapirain, On the number of conjugacy classes of finite nilpotent groups, Adv. Math. 227 (2011), 1129–1143.
MathSciNet
CrossRef
-
T. J. Laffey, The number of solutions of \(x^p = 1\) in a finite group, Math. Proc. Cambridge Philos. Soc. 80 (1976), 229–231.
MathSciNet
CrossRef
-
T. J. Laffey, The number of solutions of \(x^3 = 1\) in a \(3\)-group, Math. Z. 149 (1976), 43–45.
MathSciNet
CrossRef
-
M. S. Lazorec and M. M. Tărnăuceanu, On the average order of a finite group, J. Pure Appl. Algebra 227 (2023), 107276, 9.
MathSciNet
CrossRef
-
Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl.12 (2013), 1350026, 4.
MathSciNet
CrossRef
-
D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
MathSciNet
CrossRef
-
R. Shen, G. Chen and C. Wu, On groups with the second largest value of the sum of element orders, Comm. Algebra 43 (2015), 2618–2631.
MathSciNet
CrossRef
-
M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. 238 (2020), 629–637.
MathSciNet
CrossRef
-
M. Tărnăuceanu, A criterion for nilpotency of a finite group by the sum of element orders, Comm. Algebra 49 (2021), 1571–1577.
MathSciNet
CrossRef
-
M. Tărnăuceanu, Another criterion for supersolvability of finite groups, J. Algebra 604 (2022), 682–693.
MathSciNet
CrossRef
-
M. Tărnăuceanu and D. G. Fodor, On the sum of element orders of finite abelian groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 60 (2014), 1–7.
MathSciNet
CrossRef
Glasnik Matematicki Home Page