Glasnik Matematicki, Vol. 58, No. 2 (2023), 307-315. \( \)

ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ELEMENT ORDER OF THE ALTERNATING GROUP OF DEGREE \(5\)

Marcel Herzog, Patrizia Longobardi and Mercede Maj

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
e-mail:herzogm@tauex.tau.ac.il

Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
e-mail:plongobardi@unisa.it

Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
e-mail:mmaj@unisa.it


Abstract.   Let \(G\) be a finite group. Denote by \(\psi(G)\) the sum \(\psi(G)=\sum_{x\in G}|x|,\) where \(|x|\) denotes the order of the element \(x\), and by \(o(G)\) the average element orders, i.e. the quotient \(o(G)=\frac{\psi(G)}{|G|}.\) We prove that \(o(G) = o(A_5)\) if and only if \(G \simeq A_5\), where \(A_5\) is the alternating group of degree \(5\).

2020 Mathematics Subject Classification.   20D60, 20F16, 20E34

Key words and phrases.   Group element orders, alternating group


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.10


References:

  1. H. Amiri and S. M. Jafarian Amiri, Sums of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), 187–190.
    MathSciNet    CrossRef

  2. H. Amiri and S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm. Algebra 40 (2012), 770–778.
    MathSciNet    CrossRef

  3. H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978–2980.
    MathSciNet    CrossRef

  4. A. Bahri, B. Khosravi and Z. Akhlaghi, A result on the sum of element orders of a finite group, Arch. Math. (Basel) 114 (2020), 3–12.
    MathSciNet    CrossRef

  5. M. Baniasad Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra  516 (2018), 115–124.
    MathSciNet    CrossRef

  6. M. Baniasad Azad and B. Khosravi, On the sum of element orders of \(PSL(2,p)\) for some \(p\), Ital. J. Pure and Applied Math.  42 (2019), 12–24.

  7. M. Baniasad Azad and B. Khosravi, On two conjectures about the sum of element orders, Can. Math. Bull.  65 (2022), 30–38.
    MathSciNet    CrossRef

  8. R. Brandl and W. Shi, The characterization of \(PSL(2,p)\) by its element orders, J. Algebra 163 (1994), 109–114.
    MathSciNet    CrossRef

  9. M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra 45 (2017), 677–687.
    MathSciNet    CrossRef

  10. D. Gorenstein, Finite groups, Chelsea Publishing Co., New York, 1980.
    MathSciNet

  11. M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure Appl. Algebra, 222 (2018), 1628–1642.
    MathSciNet    CrossRef

  12. M. Herzog, P. Longobardi and M. Maj, Properties of finite and periodic groups determined by their elements orders (a survey), in: Group Theory and Computation, Springer, Singapore, 2018, 59–90.
    MathSciNet    CrossRef

  13. M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order \(2m\) with \(m\) odd, Comm. Algebra 47 (2019), 2035–2048.
    MathSciNet    CrossRef

  14. M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J.  Algebra 511 (2018), 215–226.
    MathSciNet    CrossRef

  15. M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of odd order, Internat. J. Algebra Comput. 31 (2021), 1049–1063.
    MathSciNet    CrossRef

  16. M. Herzog, P. Longobardi and M. Maj, The second maximal groups with respect to the sum of element orders, J. Pure Appl. Algebra 225 (2021), 106531, 11.
    MathSciNet    CrossRef

  17. M. Herzog, P. Longobardi and M. Maj, Another criterion for solvability of finite groups, J. Algebra 597 (2022), 1–23.
    MathSciNet    CrossRef

  18. M. Herzog, P. Longobardi and M. Maj, New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups, Int. J. Group Theory 12 (2023), 35–44.
    MathSciNet    CrossRef

  19. E. I.  Khukhro, A.  Moretó and M.  Zarrin, The average element order and the number of conjugacy classes of finite groups, J.  Algebra 569 (2021), 1–11.
    MathSciNet    CrossRef

  20. S. M. Jafarian Amiri Second maximum sum of element orders of finite nilpotent groups, Comm.  Algebra 41 (2013), 2055–2059.
    MathSciNet    CrossRef

  21. S. M. Jafarian Amiri, Maximum sum of element orders of all proper subgroups of \(PGL(2,q)\), Bull.  Iranian  Math.  Soc.  39 (2013), 501–505.
    MathSciNet

  22. S. M. Jafarian Amiri, Characterization of \(A_5\) and \(PSL(2,7)\) by sum of element orders, Int. J. Group Theory 2 (2013), 35–39.
    MathSciNet    CrossRef

  23. S. M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J.  Pure  Appl.  Algebra  218 (2014), 531–539.
    MathSciNet    CrossRef

  24. S. M. Jafarian Amiri and M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Comm. Algebra 42 (2014), 5319–5328.
    MathSciNet    CrossRef

  25. S. M. Jafarian Amiri and M. Amiri, Characterization of \(p\)-groups by sum of the element orders, Publ. Math. Debrecen 86 (2015), 31–37.
    MathSciNet    CrossRef

  26. S. M. Jafarian Amiri and M. Amiri, Sum of the Element Orders in Groups with the Square-Free Order, Bull. Malays. Math. Sci. Soc. 40 (2017), 1025–1034.
    MathSciNet    CrossRef

  27. A. Jaikin-Zapirain, On the number of conjugacy classes of finite nilpotent groups, Adv. Math. 227 (2011), 1129–1143.
    MathSciNet    CrossRef

  28. T. J. Laffey, The number of solutions of \(x^p = 1\) in a finite group, Math. Proc. Cambridge Philos. Soc. 80 (1976), 229–231.
    MathSciNet    CrossRef

  29. T. J. Laffey, The number of solutions of \(x^3 = 1\) in a \(3\)-group, Math. Z. 149 (1976), 43–45.
    MathSciNet    CrossRef

  30. M. S. Lazorec and M. M. Tărnăuceanu, On the average order of a finite group, J. Pure Appl. Algebra 227 (2023), 107276, 9.
    MathSciNet    CrossRef

  31. Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl.12 (2013), 1350026, 4.
    MathSciNet    CrossRef

  32. D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
    MathSciNet    CrossRef

  33. R. Shen, G. Chen and C. Wu, On groups with the second largest value of the sum of element orders, Comm. Algebra 43 (2015), 2618–2631.
    MathSciNet    CrossRef

  34. M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. 238 (2020), 629–637.
    MathSciNet    CrossRef

  35. M. Tărnăuceanu, A criterion for nilpotency of a finite group by the sum of element orders, Comm. Algebra 49 (2021), 1571–1577.
    MathSciNet    CrossRef

  36. M. Tărnăuceanu, Another criterion for supersolvability of finite groups, J. Algebra 604 (2022), 682–693.
    MathSciNet    CrossRef

  37. M. Tărnăuceanu and D. G. Fodor, On the sum of element orders of finite abelian groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 60 (2014), 1–7.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page