Glasnik Matematicki, Vol. 58, No. 2 (2023), 289-305. \( \)

THE NON-EXISTENCE OF A SUPER-JANKO GROUP

Alexander A. Ivanov

Institute for System Analysis ERC, CSC RAS, Moscow, Russia
e-mail:babymonster4371@hotmail.com


Abstract.   Locally projective graphs in Mathieu–Conway–Monster series appear in thin–thick pairs. A possible thick extension of a thin locally projective graph associated with the fourth Janko group has been questioned for a while. Such an extension could lead, if not to a new sporadic simple group, to something equally exciting. This paper resolves this issue ultimately in the non-existence form confirming that the list of 26 sporadic simple groups, although mysterious, is now stable. The result in fact concludes the classification project of locally projective graphs, which has been running for some twenty years.

2020 Mathematics Subject Classification.   20D05, 20D06, 20D08

Key words and phrases.   Locally projective graphs, sporadic groups, geometries


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.09


References:

  1. M. Giudici, A. A. Ivanov, L. Morgan and C. E. Praeger, A characterisation of weakly locally projective amalgams related to \(A_{16}\) and the sporadic simple groups \(M_{24}\) and \(He\), J. Algebra 460 (2016), 340–365.
    MathSciNet    CrossRef

  2. W. Giuliano, Application of the amalgam method to the study of locally projective graphs, PhD Thesis, Imperial College London, 2022.

  3. D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), 377–406.
    MathSciNet    CrossRef

  4. A. A. Ivanov, The fourth Janko group, Oxford University Press, 2004.
    MathSciNet    CrossRef

  5. A. A. Ivanov, The Mathieu groups, Cambridge Univ. Press, 2018.
    MathSciNet    CrossRef

  6. A. A. Ivanov, Locally projective graphs and their densely embedded subgraphs, Beitr. Algebra Geom. 62 (2021), 363–374.
    MathSciNet    CrossRef

  7. A. A. Ivanov, A characterization of the Mathieu-Conway-Monster series of locally projective graphs, J. Algebra 607 (2022), 426–453.
    MathSciNet    CrossRef

  8. A. A. Ivanov, Locally projective graphs of symplectic type, Innov. Incidence Geom. 20 (2023), 303–315.
    MathSciNet    CrossRef

  9. A. A. Ivanov and D. V. Pasechnik, Minimal representations of locally projective amalgams, J. London Math. Soc. (2) 70 (2004), 142–164.
    MathSciNet    CrossRef

  10. A. A. Ivanov and S. V. Shpectorov, Geometry of sporadic groups. II. Representations and amalgams, Cambridge University Press, Cambridge, 2002.
    MathSciNet    CrossRef

  11. A. A. Ivanov and S. V. Shpectorov, Amalgams determined by locally projective actions, Nagoya Math. J. 176 (2004), 19–98.
    MathSciNet    CrossRef

  12. A. A. Ivanov and S. V. Shpectorov, Tri-extraspecial groups, J. Group Theory 8 (2005), 395–413.
    MathSciNet    CrossRef

  13. W. Jones and B. Parshall, On the \(1\)-cohomology of finite groups of Lie type, In: Proceedings of the Conference on Finite Groups, Academic Press, New York, 1976, pp. 313–328.
    MathSciNet

  14. W. Lempken, A \(2\)-local characterization of Janko's group \(J_4\), J. Algebra 55 (1978), 403–445.
    MathSciNet    CrossRef

  15. Sheng Meng, Construction of a densely embedded subgraph, McS project, Imperial College London, 2019.

  16. V. I. Trofimov, Vertex stabilizers of locally projective groups of automorphisms of graphs. A summary, In: Groups, combinatorics and geometry, World Scientific Publishing Co., Inc., River Edge, 2003.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page