Glasnik Matematicki, Vol. 58, No. 2 (2023), 259-287. \( \)

A FAMILY OF \(2\)-GROUPS AND AN ASSOCIATED FAMILY OF SEMISYMMETRIC, LOCALLY \(2\)-ARC-TRANSITIVE GRAPHS

Daniel R. Hawtin, Cheryl E. Praeger and Jin-Xin Zhou

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:dan.hawtin@gmail.com

Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
e-mail:cheryl.praeger@uwa.edu.au

School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P.R. China
e-mail:jxzhou@bjtu.edu.cn


Abstract.   A mixed dihedral group is a group \(H\) with two disjoint subgroups \(X\) and \(Y\), each elementary abelian of order \(2^n\), such that \(H\) is generated by \(X\cup Y\), and \(H/H'\cong X\times Y\). In this paper, for each \(n\geq 2\), we construct a mixed dihedral \(2\)-group \(H\) of nilpotency class \(3\) and order \(2^a\) where \(a=(n^3+n^2+4n)/2\), and a corresponding graph \(\Sigma\), which is the clique graph of a Cayley graph of \(H\). We prove that \(\Sigma\) is semisymmetric, that is, \({\mathop{\rm Aut}}(\Sigma)\) acts transitively on the edges but intransitively on the vertices of \(\Sigma\). These graphs are the first known semisymmetric graphs constructed from groups that are not \(2\)-generated (indeed \(H\) requires \(2n\) generators). Additionally, we prove that \(\Sigma\) is locally \(2\)-arc-transitive, and is a normal cover of the `basic' locally \(2\)-arc-transitive graph \({\rm\bf K}_{2^n,2^n}\). As such, the construction of this family of graphs contributes to the investigation of normal covers of prime-power order of basic locally \(2\)-arc-transitive graphs – the `local' analogue of a question posed by C. H. Li.

2020 Mathematics Subject Classification.   05C38, 20B25

Key words and phrases.   Semisymmetric, \(2\)-arc-transitive, edge-transitive, normal cover, Cayley graph


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.08


References:

  1. W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997) 235–265.
    MathSciNet    CrossRef

  2. M. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to \(768\) vertices, J. Algebraic Combin. 23 (2006), 255–294.
    MathSciNet    CrossRef

  3. M. Conder, J.-X. Zhou, Y. Q. Feng and M. M. Zhang, Edge-transitive bi-Cayley graphs, J. Combin Theory Ser. B, 145 (2020), 264–306.
    MathSciNet    CrossRef

  4. W. Fan, D. Leemans, C. H. Li and J. Pan, Locally \(2\)-arc-transitive complete bipartite graphs, J. Combin. Theory Ser. A 120 (2013), 683–699.
    MathSciNet    CrossRef

  5. J. Folkman, Regular line-symmetric graphs J. Combinatorial Theory 3 (1967), 215–232.
    MathSciNet    CrossRef

  6. The GAP Group, GAP – Groups, algorithms, and programming, Version 4.11.1, 2021.

  7. M. Giudici, C. H. Li and C. E. Praeger, Analysing finite locally \(s\)-arc transitive graphs, Tran. Amer. Math. Soc. 356 (2004), 291–317.
    MathSciNet    CrossRef

  8. C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981), 243–256.
    MathSciNet    CrossRef

  9. M. Hall, The theory of groups, The Macmillan Company, New York, 1959.
    MathSciNet

  10. D. R. Hawtin, C. E. Praeger and J. X. Zhou, A characterisation of edge-affine \(2\)-arc-transitive covers of \( {\rm\bf K}_{2^n,2^n} \), preprint, 2022, arXiv:2211.16809.
    CrossRef

  11. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.
    MathSciNet    CrossRef

  12. A. A. Ivanov and C. E. Praeger, On finite affine \(2\)-arc-transitive graphs, European J. Combin. 14 (1993), 421–444.
    MathSciNet    CrossRef

  13. A. V. Ivanov, On edge but not vertex transitive regular graphs, in: Combinatorial design theory, North-Holland, Amsterdam, 1987, 273–285,
    CrossRef

  14. C. H. Li, Finite \(s\)-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001), 129–137.
    MathSciNet    CrossRef

  15. C.H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps, Tran. Amer. Math. Soc. 358 (2006), 4605–4635.
    MathSciNet    CrossRef

  16. C. H. Li, L. Ma and J. Pan, Locally primitive graphs of prime-power order, J. Aust. Math. Soc. 86 (2009), 111–122.
    MathSciNet    CrossRef

  17. C. H. Li and J. M. Pan, Finite \(2\)-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008), 148–158.
    MathSciNet    CrossRef

  18. C. H. Li, C. E. Praeger, A. Venkatesh and S. Zhou, Finite locally-quasiprimitive graphs, Discrete Math., 246 (2002), 197–218.
    MathSciNet    CrossRef

  19. C. E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19 (1985), 149–163.
    MathSciNet

  20. C. E. Praeger, An O'Nan–Scott theorem for finite quasiprimitive permutation groups and an application to \(2\)-arc transitive graphs, J. London Math. Soc. (2) 47 (1993), 227–239.
    MathSciNet    CrossRef

  21. C. E. Praeger, On a reduction theorem for finite bipartite \(2\)-arc transitive graphs, Australas. J. Combin. 7 (1993), 21–36.
    MathSciNet

  22. C. E. Praeger and C. Schneider, Permutation groups and cartesian decompositions, Cambridge University Press, Cambridge, 2018.
    MathSciNet    CrossRef

  23. D. J. S Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
    MathSciNet    CrossRef

  24. W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474.
    MathSciNet    CrossRef

  25. J. X. Zhou, Y. Q. Feng, The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B 116 (2016), 504–532.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page