Glasnik Matematicki, Vol. 58, No. 2 (2023), 233-245. \( \)

STEINER TRIPLE SYSTEMS OF ORDER \(21\) WITH SUBSYSTEMS

Daniel Heinlein and Patric R. J. Östergård

Department of Information and Communications Engineering, Aalto University, 00076 Aalto, Finland
e-mail:-

Department of Information and Communications Engineering, Aalto University, 00076 Aalto, Finland
e-mail:patric.ostergard@aalto.fi


Abstract.   The smallest open case for classifying Steiner triple systems is order 21. A Steiner triple system of order 21, an STS\((21)\), can have subsystems of orders 7 and 9, and it is known that there are 12,661,527,336 isomorphism classes of STS\((21)\)s with sub-STS\((9)\)s. Here, the classification of STS\((21)\)s with subsystems is completed by settling the case of STS\((21)\)s with sub-STS\((7)\)s. There are 116,635,963,205,551 isomorphism classes of such systems. An estimation of the number of isomorphism classes of STS\((21)\)s is given.

2020 Mathematics Subject Classification.   05B07

Key words and phrases.   Classification, Steiner triple system, subsystem


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.06


References:

  1. L. Babai, Almost all Steiner triple systems are asymmetric, Ann. Discrete Math. 7 (1980), 37–39.
    MathSciNet

  2. A. Betten, G. Brinkmann and T. Pisanski, Counting symmetric configurations \(v_3\), Discrete Appl. Math. 99 (2000), 331–338.
    MathSciNet    CrossRef

  3. M. B. Cohen, C. J. Colbourn, L. A. Ives and A. C. H. Ling, Kirkman triple systems of order 21 with nontrivial automorphism group, Math. Comp. 71 (2002), 873–881.
    MathSciNet    CrossRef

  4. C. J. Colbourn, Triple systems, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 58–71.
    MathSciNet

  5. C. J. Colbourn and A. Rosa, Triple systems, Clarendon Press, Oxford, 1999.
    MathSciNet

  6. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, , 2020.

  7. S. N. Kapralov and S. Topalova, On the Steiner triple systems of order 21 with automorphisms of order 3, in: Proceedings of the Third International Workshop on Algebraic and Combinatorial Coding Theory, 1992, 105–108.

  8. P. Kaski, Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms, SIAM J. Discrete Math. 19 (2005), 664–690.
    MathSciNet    CrossRef

  9. P. Kaski and P. R. J. Östergård, The Steiner triple systems of order 19, Math. Comp. 73 (2004), 2075–2092.
    MathSciNet    CrossRef

  10. P. Kaski and P. R. J. Östergård, One-factorizations of regular graphs of order 12, Electron. J. Combin. 12 (2005), #R2, 25 pp.
    MathSciNet    CrossRef

  11. P. Kaski and P. R. J. Östergård, Classification algorithms for codes and designs, Springer, Berlin, 2006.
    MathSciNet

  12. P. Kaski, P. R. J. Östergård and A. Popa, Enumeration of Steiner triple systems with subsystems, Math. Comp. 84 (2015), 3051–3067.
    MathSciNet    CrossRef

  13. P. Kaski, P. R. J. Östergård, S. Topalova and R. Zlatarski, Steiner triple systems of order 19 and 21 with subsystems of order 7, Discrete Math. 308 (2008), 2732–2741.
    MathSciNet    CrossRef

  14. P. Kaski and O. Pottonen, libexact user's guide, version 1.0, HIIT Technical Reports 2008-1, Helsinki Institute for Information Technology HIIT, 2008.

  15. J. I. Kokkala and P. R. J. Östergård, Kirkman triple systems with subsystems, Discrete Math. 343 (2020), 111960, 8 pp.
    MathSciNet    CrossRef

  16. J. I. Kokkala and P. R. J. Östergård, Sparse Steiner triple systems of order 21, J. Combin. Des. 29 (2021), 75–83.
    MathSciNet    CrossRef

  17. M. Kwan, Almost all Steiner triple systems have perfect matchings, Proc. London Math. Soc. (3) 121 (2020), 1468–1495.
    MathSciNet    CrossRef

  18. C. W. H. Lam and Y. Miao, Cyclically resolvable cyclic Steiner triple systems of order 21 and 39, Discrete Math. 219 (2000), 173–185.
    MathSciNet    CrossRef

  19. R. A. Mathon, K. T. Phelps and A. Rosa, A class of Steiner triple systems of order 21 and associated Kirkman systems, Math. Comp. 37 (1981), 209–222 and 64 (1995), 1355–1356.
    MathSciNet    CrossRef    MathSciNet    CrossRef

  20. R. Mathon and A. Rosa, The 4-rotational Steiner and Kirkman triple systems of order 21, Ars Combin. 17A (1984), 241–250.
    MathSciNet

  21. R. Mathon and A. Rosa, 2-\((v,k,\lambda)\) designs of small order, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 25–58.
    MathSciNet

  22. B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112.
    MathSciNet    CrossRef

  23. B. D. McKay and I. M. Wanless, Most Latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), 322–347.
    MathSciNet    CrossRef

  24. M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999), 137–146.
    MathSciNet    CrossRef

  25. R. W. Quackenbush, Algebraic speculations about Steiner systems, Ann. Discrete Math. 7 (1980), 25–35.
    MathSciNet

  26. G. Royle, Graphs and multigraphs, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 731–740.
    MathSciNet

  27. D. R. Stinson and E. Seah, 284457 Steiner triple systems of order 19 contain a subsystem of order 9, Math. Comp. 46 (1986), 717–729.
    MathSciNet    CrossRef

  28. V. D. Tonchev, Steiner triple systems of order 21 with automorphisms of order 7, Ars Combin. 23 (1987), 93–96 and 39 (1995), 3.
    MathSciNet    MathSciNet

  29. S. Topalova, STS(21) with automorphisms of order 3 with 3 fixed points and 7 fixed blocks, Math. Balkanica (N.S.) 18 (2004), 215–221.
    MathSciNet

Glasnik Matematicki Home Page