Glasnik Matematicki, Vol. 58, No. 2 (2023), 233-245. \( \)
STEINER TRIPLE SYSTEMS OF ORDER \(21\) WITH SUBSYSTEMS
Daniel Heinlein and Patric R. J. Östergård
Department of Information and Communications Engineering, Aalto University, 00076 Aalto, Finland
e-mail:-
Department of Information and Communications Engineering, Aalto University, 00076 Aalto, Finland
e-mail:patric.ostergard@aalto.fi
Abstract.
The smallest open case for classifying Steiner triple systems is
order 21. A Steiner triple system of order 21, an STS\((21)\), can have
subsystems of orders 7 and 9, and it is known that there are
12,661,527,336 isomorphism classes of STS\((21)\)s with sub-STS\((9)\)s.
Here, the classification of STS\((21)\)s with subsystems is completed by
settling the case of STS\((21)\)s with sub-STS\((7)\)s.
There are
116,635,963,205,551 isomorphism classes of such systems. An estimation
of the number of isomorphism classes of STS\((21)\)s is given.
2020 Mathematics Subject Classification. 05B07
Key words and phrases. Classification, Steiner triple system, subsystem
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.06
References:
-
L. Babai, Almost all Steiner triple systems are asymmetric, Ann. Discrete Math. 7 (1980), 37–39.
MathSciNet
-
A. Betten, G. Brinkmann and T. Pisanski, Counting symmetric configurations \(v_3\), Discrete Appl. Math. 99 (2000), 331–338.
MathSciNet
CrossRef
-
M. B. Cohen, C. J. Colbourn, L. A. Ives and A. C. H. Ling, Kirkman triple systems of order 21 with nontrivial automorphism group, Math. Comp. 71 (2002), 873–881.
MathSciNet
CrossRef
-
C. J. Colbourn, Triple systems, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 58–71.
MathSciNet
-
C. J. Colbourn and A. Rosa, Triple systems, Clarendon Press, Oxford, 1999.
MathSciNet
-
The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, , 2020.
-
S. N. Kapralov and S. Topalova, On the Steiner triple systems of order 21 with automorphisms of order 3, in: Proceedings of the Third International Workshop on Algebraic and Combinatorial Coding Theory, 1992, 105–108.
-
P. Kaski, Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms, SIAM J. Discrete Math. 19 (2005), 664–690.
MathSciNet
CrossRef
-
P. Kaski and P. R. J. Östergård, The Steiner triple systems of order 19, Math. Comp. 73 (2004), 2075–2092.
MathSciNet
CrossRef
-
P. Kaski and P. R. J. Östergård, One-factorizations of regular graphs of order 12, Electron. J. Combin. 12 (2005), #R2, 25 pp.
MathSciNet
CrossRef
-
P. Kaski and P. R. J. Östergård, Classification algorithms for codes and designs, Springer, Berlin, 2006.
MathSciNet
-
P. Kaski, P. R. J. Östergård and A. Popa, Enumeration of Steiner triple systems with subsystems, Math. Comp. 84 (2015), 3051–3067.
MathSciNet
CrossRef
-
P. Kaski, P. R. J. Östergård, S. Topalova and R. Zlatarski, Steiner triple systems of order 19 and 21 with subsystems of order 7, Discrete Math. 308 (2008), 2732–2741.
MathSciNet
CrossRef
-
P. Kaski and O. Pottonen, libexact user's guide, version 1.0, HIIT Technical Reports 2008-1, Helsinki Institute for Information Technology HIIT, 2008.
-
J. I. Kokkala and P. R. J. Östergård, Kirkman triple systems with subsystems, Discrete Math. 343 (2020), 111960, 8 pp.
MathSciNet
CrossRef
-
J. I. Kokkala and P. R. J. Östergård, Sparse Steiner triple systems of order 21, J. Combin. Des. 29 (2021), 75–83.
MathSciNet
CrossRef
-
M. Kwan, Almost all Steiner triple systems have perfect matchings, Proc. London Math. Soc. (3) 121 (2020), 1468–1495.
MathSciNet
CrossRef
-
C. W. H. Lam and Y. Miao, Cyclically resolvable cyclic Steiner triple systems of order 21 and 39, Discrete Math. 219 (2000), 173–185.
MathSciNet
CrossRef
-
R. A. Mathon, K. T. Phelps and A. Rosa, A class of Steiner triple systems of order 21 and associated Kirkman systems, Math. Comp. 37 (1981), 209–222 and 64 (1995), 1355–1356.
MathSciNet
CrossRef
MathSciNet
CrossRef
-
R. Mathon and A. Rosa, The 4-rotational Steiner and Kirkman triple systems of order 21, Ars Combin. 17A (1984), 241–250.
MathSciNet
-
R. Mathon and A. Rosa, 2-\((v,k,\lambda)\) designs of small order, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 25–58.
MathSciNet
-
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112.
MathSciNet
CrossRef
-
B. D. McKay and I. M. Wanless, Most Latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), 322–347.
MathSciNet
CrossRef
-
M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999), 137–146.
MathSciNet
CrossRef
-
R. W. Quackenbush, Algebraic speculations about Steiner systems, Ann. Discrete Math. 7 (1980), 25–35.
MathSciNet
-
G. Royle, Graphs and multigraphs, in: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007, 731–740.
MathSciNet
-
D. R. Stinson and E. Seah, 284457 Steiner triple systems of order 19 contain a subsystem of order 9, Math. Comp. 46 (1986), 717–729.
MathSciNet
CrossRef
-
V. D. Tonchev, Steiner triple systems of order 21 with automorphisms of order 7, Ars Combin. 23 (1987), 93–96 and 39 (1995), 3.
MathSciNet
MathSciNet
-
S. Topalova, STS(21) with automorphisms of order 3 with 3 fixed points and 7 fixed blocks, Math. Balkanica (N.S.) 18 (2004), 215–221.
MathSciNet
Glasnik Matematicki Home Page