Glasnik Matematicki, Vol. 58, No. 2 (2023), 225-232. \( \)

ON SYMMETRIC \(2\)-\((70,24,8)\) DESIGNS WITH AN AUTOMORPHISM OF ORDER \(6\)

Sanja Rukavina and Vladimir D. Tonchev

Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail:sanjar@math.uniri.hr

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
e-mail:tonchev@mtu.edu


Abstract.   In this paper we analyze possible actions of an automorphism of order six on a \(2\)-\((70, 24, 8)\) design, and give a complete classification for the action of the cyclic group of order six \(G= \langle \rho \rangle \cong Z_6 \cong Z_2 \times Z_3\), where \(\rho^3\) fixes exactly \(14\) points (blocks) and \(\rho^2\) fixes \(4\) points (blocks). Up to isomorphism there are \(3718\) such designs. This result significantly increases the number of previously known \(2\)-\((70,24,8)\) designs.

2020 Mathematics Subject Classification.   05B05, 94B05

Key words and phrases.   Symmetric design, automorphism group


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.05


References:

  1. T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, Cambridge, 1999.

  2. W. Bosma and J. Cannon, Handbook of Magma functions, Department of Mathematics, University of Sydney, 1994.

  3. D. Crnković, Symmetric (70,24,8) designs having \( Frob_{21} \times Z_2 \) as automorphism group, Glas. Mat. Ser. III 34(54) (1999), 109–121.
    MathSciNet

  4. D. Crnković and S. Rukavina, Construction of block designs admitting an abelian automorphism group, Metrika 62 (2005), 175–183.
    MathSciNet    CrossRef

  5. D. Crnković, S. Rukavina and M. Schmidt, A classification of all symmetric block designs of order nine with an automorphism of order six, J. Combin. Des. 14 (2006), 301–312.
    MathSciNet    CrossRef

  6. D. Crnković, S. Rukavina and V. D. Tonchev, New symmetric (61,16,4) designs obtained from codes, in: Algebraic design theory and Hadamard matrices, Springer, 2015, 61–69.
    MathSciNet    CrossRef

  7. V. Ćepulić, On symmetric block designs (45,12,3) with automorphisms of order 5, Ars Combin. 37 (1994), 33–48.
    MathSciNet

  8. A. Golemac, Construction of new symmetric designs with parameters (70,24,8), Discrete Math. 120 (1993), 51–58.
    MathSciNet    CrossRef

  9. W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
    MathSciNet    CrossRef

  10. Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics `90 (Gaeta, 1990), Ann. Discrete Math. 52 (1992), 275–277.
    MathSciNet    CrossRef

  11. Z. Janko and T. van Trung, The existence of a symmetric block design for (70,24,8), Mitt. Math. Sem. Giessen 165 (1984), 17–18.
    MathSciNet

  12. E. Lander, Symmetric designs: an algebraic approach, Cambridge University Press, 1983.
    MathSciNet    CrossRef

  13. A. Munemasa and V. D. Tonchev, A new quasi-symmetric 2-(56,16,6) design obtained from codes, Discrete Math. 284 (2004), 231–234.
    MathSciNet    CrossRef

  14. V. D. Tonchev, Combinatorial configurations, John Wiley & Sons, Inc., New York 1988.

Glasnik Matematicki Home Page