Glasnik Matematicki, Vol. 58, No. 2 (2023), 201-224. \( \)
BUSSEY SYSTEMS AND STEINER'S TACTICAL PROBLEM
Charles J. Colbourn, Donald L. Kreher and Patric R. J. Östergård
Arizona State University, Tempe, Arizona, USA
e-mail:Charles.Colbourn@asu.edu
Michigan Technological University, Houghton, Michigan, USA
e-mail:Kreher@mtu.edu
Department of Information and Communications Engineering, Aalto University School of Electrical Engineering, 00076 Aalto, Finland
e-mail:patric.ostergard@aalto.fi
Abstract.
In 1853, Steiner posed a number of combinatorial (tactical) problems, which eventually led to a large body of research on Steiner systems.
However, solutions to Steiner's questions coincide with Steiner systems only for strengths two and three.
For larger strengths, essentially only one class of solutions to Steiner's tactical problems is known, found by Bussey more than a century ago.
In this paper, the relationships among Steiner systems, perfect binary one-error-correcting codes, and solutions to Steiner's tactical problem (Bussey systems) are discussed.
For the latter, computational results are provided for at most 15 points.
2020 Mathematics Subject Classification. 05B05, 51E10, 94B99, 05B30, 05B40
Key words and phrases. Steiner system, original Steiner system, Bussey system, perfect code
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.04
References:
-
W. O. Alltop, Extending \(t\)-designs, J. Combinatorial Theory Ser. A 18 (1975), 177–186.
MathSciNet
CrossRef
-
I. Anderson, C. J. Colbourn, J. H. Dinitz, and T. S. Griggs, Design theory: Antiquity to 1950, in: Handbook of combinatorial designs, Chapman and Hall/CRC, Boca Raton, 2007, 11–22.
-
J. E. F. Assmus Jr. and J. H. F. Mattson Jr., On tactical configurations and error-correcting codes, J. Combinatorial Theory 2 (1967), 243–257.
MathSciNet
-
W. W. R. Ball, Mathematical recreations and essays, The Macmillan Company, London, 1914.
-
J. A. Barrau, On the combinatory problem of Steiner, Nederl. Akad. Wetensch. Proc. Ser. B 11 (1908), 352–360.
-
S. Bays and E. de Weck, Sur les systèmes de quadruples, Comment. Math. Helv. 7 (1934), 222–241.
MathSciNet
CrossRef
-
R. A. Beezer, Counting configurations in designs, J. Combin. Theory Ser. A 96 (2001), 341–357.
MathSciNet
CrossRef
-
R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353–399.
MathSciNet
-
G. Brunel, Sur les deux systèmes de triades de treize éléments, J. Math. Pures Appl. (5) 7 (1901) 305–330.
-
W. H. Bussey, On the tactical problem of Steiner, Bull. Amer. Math. Soc. 16 (1909), 19–22.
MathSciNet
CrossRef
-
W. H. Bussey, The tactical problem of Steiner, Amer. Math. Monthly 21 (1914), 3–12.
MathSciNet
CrossRef
-
R. D. Carmichael, Tactical configurations of rank two, Amer. J. Math. 53 (1931), 217–240.
MathSciNet
CrossRef
-
L. G. Chouinard II, E. S. Kramer and D. L. Kreher, Graphical \(t\)-wise balanced designs, Discrete Math. 46 (1983), 227–240.
MathSciNet
CrossRef
-
C. J. Colbourn, The configuration polytope of \(l\)-line configurations in Steiner triple systems, Math. Slovaca 59 (2009), 77–108.
MathSciNet
CrossRef
-
C. J. Colbourn and J. H. Dinitz (eds.), Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007.
MathSciNet
-
C. J. Colbourn, A. D. Forbes, M. J. Grannell, T. S. Griggs, P. Kaski, P. R. J. Östergård, D. A. Pike and O. Pottonen, Properties of the Steiner triple systems of order 19, Electron. J. Combin. 17 (2010), research paper 98.
MathSciNet
CrossRef
-
C. J. Colbourn and R. A. Mathon, Steiner systems, in: Handbook of combinatorial designs, Chapman and Hall/CRC, Boca Raton, 2007, 102–110.
-
C. J. Colbourn and A. Rosa, Triple systems, The Clarendon Press, Oxford University Press, New York, 1999.
MathSciNet
-
F. N. Cole, L. D. Cummings, and H. S. White, The complete enumeration of triad systems in 15 elements, Proc. Natl. Acad. Sci. USA 3 (1917), 197–199.
-
L. D. Cummings, An undervalued Kirkman paper, Bull. Amer. Math. Soc. 24 (1918), 336–339.
MathSciNet
CrossRef
-
V. De Pasquale, Sui sistemi ternari di 13 elementi, Rendiconti. Reale Istituto Lombardo di Science e Lettere, Serie II, 32 (1899), 213–221.
-
I. Diener, E. Schmitt and H. L. de Vries, All \(80\) Steiner triple systems on \(15\) elements are derived, Discrete Math. 55 (1985), 13–19.
MathSciNet
CrossRef
-
C. Ehrhardt, Tactics: in search of a long-term mathematical project (1844–1896), Historia Math. 42 (2015), 436–467.
MathSciNet
CrossRef
-
M. J. E. Golay, Notes on digital coding, Proc. I.R.E. 37 (1949), 657.
MathSciNet
-
M. J. Grannell, T. S. Griggs and R. A. Mathon, Steiner systems \(S(5,6,v)\) with \(v=72\) and \(84\), Math. Comp. 67 (1998), 357–359, S1–S9.
MathSciNet
CrossRef
-
R. W. Hamming, Error detecting and error correcting codes, Bell System Tech. J. 29 (1950), 147–160.
MathSciNet
CrossRef
-
H. Hanani, On quadruple systems, Canadian J. Math. 12 (1960), 145–157.
MathSciNet
CrossRef
-
H. Hanani, On the original Steiner systems, Discrete Math. 51 (1984), 309–310.
MathSciNet
CrossRef
-
H. Hanani and J. Schönheim, On Steiner systems, Israel J. Math. 2 (1964), 139–142 and 4 (1966), 144.
MathSciNet
CrossRef
-
O. Heden, A survey of perfect codes, Adv. Math. Commun. 2 (2008), 223–247.
MathSciNet
CrossRef
-
S. Jukna, Extremal combinatorics, Springer, Heidelberg, 2011.
MathSciNet
CrossRef
-
P. Kaski and P. R. J. Östergård, The Steiner triple systems of order 19, Math. Comp. 73 (2004), 2075–2092.
MathSciNet
CrossRef
-
P. Kaski, P. R. J. Östergård and O. Pottonen, The Steiner quadruple systems of order 16, J. Combin. Theory Ser. A 113 (2006), 1764–1770.
MathSciNet
CrossRef
-
P. Kaski and O. Pottonen,
libexact
user's guide, version 1.0., Technical Report 2008-1, Helsinki Institute for Information Technology, 2008. -
P. Keevash, The existence of designs, 2014, arXiv:1401.3665.
Link
-
T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Mathematical Journal 2 (1847), 191–204.
-
E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
MathSciNet
CrossRef
-
K. A. Lauinger, D. L. Kreher, R. Rees and D. R. Stinson, Computing transverse \(t\)-designs, J. Combin. Math. Combin. Comput. 54 (2005), 33–56.
MathSciNet
-
B. D. McKay, nauty user's guide (version 1.5), Report TR-CS-90-02, Computer Science, Australian National University, 1990.
-
N. S. Mendelsohn, A theorem on Steiner systems, Canadian J. Math. 22 (1970), 1010–1015.
MathSciNet
CrossRef
-
N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems \(S(3,\,4,\,14)\) and \(S(4,\,5,\,15)\), Utilitas Math. 1 (1972), 5–95.
MathSciNet
-
E. H. Moore, Tactical Memoranda I–III, Amer. J. Math. 18 (1896), 264–290.
MathSciNet
CrossRef
-
E. Netto, Lehrbuch der Combinatorik, Teubner, Leipzig, 1927.
-
P. R. J. Östergård and O. Pottonen, There exist Steiner triple systems of order 15 that do not occur in a perfect binary one-error-correcting code, J. Combin. Des. 15 (2007), 465–468.
MathSciNet
CrossRef
-
P. R. J. Östergård and O. Pottonen, There exists no Steiner system \(S(4,5,17)\), J. Combin. Theory Ser. A 115 (2008), 1570–1573.
MathSciNet
CrossRef
-
P. R. J. Östergård and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I. Classification, IEEE Trans. Inform. Theory 55 (2009), 4657–4660.
MathSciNet
CrossRef
-
P. R. J. Östergård, O. Pottonen and K. T. Phelps, The perfect binary one-error-correcting codes of length 15: Part II. Properties, IEEE Trans. Inform. Theory 56 (2010), 2571–2582.
MathSciNet
CrossRef
-
K. T. Phelps, A combinatorial construction of perfect codes, SIAM J. Algebraic Discrete Methods 4 (1983), 398–403.
MathSciNet
CrossRef
-
K. T. Phelps, A general product construction for error correcting codes, SIAM J. Algebraic Discrete Methods 5 (1984), 224–228.
MathSciNet
CrossRef
-
M. Plotkin, Binary codes with specified minimum distance, IRE Trans. IT-6 (1960), 445–450.
MathSciNet
CrossRef
-
J. Plücker, System der analytischen Geometrie, auf neue Betrachtungsweisen gegründet, und insbesondere eine ausfḧrliche Theorie der Curven dritter Ordnung enthalend, Duncker und Humboldt, Berlin, 1835.
-
J. Plücker, Theorie der algebraischen Curven, gegründet auf eine meue Behandlungensweise der analytischen Geometrie, Marcus, Bonn, 1839.
-
G. Salmon, A treatise on the higher plane curves, Hodges, Foster, and Figgis, Dublin, 1879.
-
N. J. A. Sloane and D. S. Whitehead, New family of single-error correcting codes, IEEE Trans. Inform. Theory IT-16 (1970), 717–719.
MathSciNet
CrossRef
-
F. I. Solov'eva, Binary nongroup codes, Metody Diskret. Analiz. 37 (1981), 65–76, 86.
MathSciNet
-
E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544–548.
-
J. Steiner, Combinatorische Aufgaben, J. Reine Angew. Math. 45 (1853), 181–182.
MathSciNet
CrossRef
-
J. Steiner, Allgemeine Eigenschaften der algebraischen, Curven, J. Reine Angew. Math. 47 (1854), 1–6.
-
J. Steiner, Eigenschaften der Curven vierten Grades rücksichtlich ihrer Doppeltangenten, J. Reine Angew. Math. 49 (1855), 265–272.
-
D. R. Stinson and Y. J. Wei, Some results on quadrilaterals in Steiner triple systems, Discrete Math. 105 (1992), 207–219.
MathSciNet
CrossRef
-
J. J. Sylvester, Elementary researches in the analysis of combinatorial aggregation, Phil. Mag. (3) 24 (1844), 285–296.
-
J. H. van Lint, A survey of perfect codes, Rocky Mountain J. Math. 5 (1975), 199–224.
MathSciNet
CrossRef
-
J. L. Vasil'ev, On nongroup close-packed codes, Problemy Kibernet. 8 (1962), 337–339, (in Russian). English translation in Probleme der Kybernetik 8 (1965), 375–378.
-
O. Veblen and J. W. Young, Projective geometry, Ginn and Co., Boston, 1916.
-
E. Witt, Die 5-fach transitiven gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256–264.
MathSciNet
CrossRef
-
E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1937), 265–275.
-
W. S. B. Woolhouse, Prize question 1733, Lady's and Gentleman's Diary, 1844.
Glasnik Matematicki Home Page